Search results

1 – 10 of 61
Article
Publication date: 7 November 2023

Fareha Asim, Farhana Naeem and Shenela Naqvi

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This…

Abstract

Purpose

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide.

Design/methodology/approach

Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 23 32-mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 23 32 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures.

Findings

Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially.

Originality/value

This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 June 2023

Heba Tolla El Sayed Abo El Naga and Manar Yahia Ismail Abd El-Aziz

Synthetic materials have many drawbacks in high-performance garments because they absorb less moisture and cause allergies to sensitive individuals. Cotton materials cannot…

Abstract

Purpose

Synthetic materials have many drawbacks in high-performance garments because they absorb less moisture and cause allergies to sensitive individuals. Cotton materials cannot satisfy all the requirements and cannot provide the required high performance. This study aims to use eco-friendly materials with a common structure to analyse their suitability for high-performance garment application.

Design/methodology/approach

This study used two eco-friendly yarns (bamboo, modal and bamboo: modal 50:50) and yarns per needle (two- and four-ply yarns). with a single jersey knit construction and gauge of 7. The physical, mechanical, appearance, comfort, thermal and ultraviolet protection factor (UPF) protection characteristics were evaluated using 15 tests.

Findings

The produced knitted fabrics showed high performance for use as garments with physical, mechanical, appearance, comfort, thermal and UPF protection characteristics that were achieved, tested and analysed. The highest-achieved samples with a good UPF (<15) were made from bamboo material, which has other high-performance characteristics such as antibacterial characteristics, a soft surface, thermal insulation and others.

Research limitations/implications

The single jersey structure was used for producing fabrics as it is the common structure in the garment. Also, only gauge 7 was used for its economics and ease of production.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 14 March 2016

Kavita Choudhary and Suman Pant

This paper aims to present comfort properties of bamboo-silk and cotton-silk Kota Doria fabrics.

133

Abstract

Purpose

This paper aims to present comfort properties of bamboo-silk and cotton-silk Kota Doria fabrics.

Design/methodology/approach

Two types of Kota Doria fabrics were manufactured: one from the mixture of silk and bamboo yarns and the other from the mixture of cotton and silk yarns. Air permeability, thermal resistance and moisture management properties were determined.

Findings

Air permeability of bamboo-silk fabric was higher than that of cotton-silk fabric, whereas thermal resistance was less. Moisture management of both the fabrics was almost the same.

Details

Research Journal of Textile and Apparel, vol. 20 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 March 2018

Wasif Latif, Abdul Basit, Zulfiqar Ali and Sajjad Ahmad Baig

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers…

Abstract

Purpose

The purpose of this paper is to study the 100 percent pure cotton and 50:50 cotton and regenerated fibers (tencel, modal, bamboo, viscose) blends. The blends of regenerated fibers with cotton are studied so as to replace 100 percent cotton fabrics with the cotton blends as cotton cannot fulfill the demand of clothing due to the increasing population.

Design/methodology/approach

In order to conduct this study, cotton, as natural cellulose fiber, was used. Regenerated fibers include viscose, tencel, modal and bamboo. Five yarn samples of Ne 30/1 of 100 percent cotton and blends (50:50) of cotton with tencel, modal, bamboo and viscose fibers were produced. The blending was done in the Blow-room, and yarn samples were produced by employing the ring spinning technique. Plain woven fabrics samples with Ends (76) and Picks (68) per inch of 120 gsm were prepared. The fabric samples were tested for mechanical (warp and weft tensile and tear strengths) and comfort properties (air permeability, moisture management and thermal resistance).

Findings

Cotton:tencel fabric has the excellent mechanical (tensile and tear strength) as well as comfort properties (air permeability, moisture management and thermal resistance). It means that the most suitable blend that cotton can make with the regenerated fibers is the tencel. Therefore, to have more comfortable fabrics, the fabrics which are being made by 100 percent cotton can be replaced with the cotton:tencel.

Originality/value

To the authors’ information, no study has been reported in which all the regenerated fibers blended with cotton were studied. Hence, the aim of this work is to study the mechanical and comfort properties of the regenerated fibers (modal, tencel, viscose and bamboo) blended with cotton. The blends of cotton with regenerated fibers might replace 100 percent cotton in clothing applications as cotton cannot fulfill the increasing demanding of clothing.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 January 2019

Sibel Kaplan and Ceren Karaman

The purpose of this paper is to investigate thermal comfort performances of socks produced from cotton and regenerated cellulosic fiber yarns by thermal resistance (by a newly…

Abstract

Purpose

The purpose of this paper is to investigate thermal comfort performances of socks produced from cotton and regenerated cellulosic fiber yarns by thermal resistance (by a newly designed foot thermal manikin), moisture management tester (MMT) parameters and permeability (air and water vapor) tests.

Design/methodology/approach

Single jersey fabrics and socks were knitted from 30 Ne yarns produced from cotton, different regenerated cellulosic fibers (viscose, modal, bamboo, micromodal, Tencel®, Tencel LF®) and their blends. Thermal resistances of the socks were compared by a newly developed thermal foot manikin in a more realistic way than measurements in fabric form. Besides air and water vapor permeability, moisture management parameters of the fabrics were tested to differentiate performances of cellulosic fibers.

Findings

Results show that air permeability, liquid absorption and transfer parameters measured by MMT are generally identical and better for regenerated cellulosic fabrics than cotton. Micromodal and Tencel® have better performances for liquid transfer and overall moisture management capacities are superior for bamboo and Tencel LF®. Thermal resistances of the socks are minimum for Tencel LF® having a cross-linked structure and maximum for viscose socks.

Originality/value

It is thought that thermal resistance measured in socks form is more realistic than fabric measurements and results of this study that can be valid for all knitted garments. Moreover, comprehensive material plan of the study is valuable for getting reliable results for regenerated cellulosic fibers that have small differences in cases of thermal resistance and liquid transfer.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Govindan Karthikeyan, Govind Nalankilli, O L Shanmugasundaram and Chidambaram Prakash

– The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Abstract

Purpose

The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Design/methodology/approach

Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures.

Findings

An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo.

Research limitations/implications

It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up.

Originality/value

This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 July 2023

Amal Mohamed El-Moursy, Zeinab Mohmed Abdel Mageid, Manar Yahia Ismail Abd El-Aziz, Nour Asser and Osama Hakeim

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic…

Abstract

Purpose

Wearing clothes requires specifications for feeling comfortable, derived from the fibres, fabrics and finishing properties. This study aims to deal with the effect of economic blends containing hollow fibres, bamboo and cotton/polyester waste on the mechanical properties of the produced fabrics and the appropriate end use.

Design/methodology/approach

This research included two blends: one consisted of cotton/polyester wastes blended with bamboo and the other to which Chorisia fibres were added. Two weft counts 10,6/1 Ne were made from each blend, which were used to produce four fabric samples (S1 Chorisia-free and S2 with Chorisia); additionally, another two samples were dyed that contain Chorisia (S3) from each count. The six samples were tested by Kawabata Evaluation System (KES).

Findings

The samples gave a good total hand value (THV) for use as men's winter suits, where the thicker count 6/1, with and without Chorisia had better properties, also both counts 6, 10/1 with dye. The hollow fibres affected the fabrics’ properties, including thickness, shear, bending, thermal conductivity and weight. Both blends had a positive effect on THV.

Research limitations/implications

Cotton/polyester waste, Chorisia and bamboo fibres were tested, and 2% Remazol Yellow GNL dye was used.

Practical implications

The ratio of blending, weft counts and dye affected the fabric’s properties, with consequences for the use of the Kawabata system and its applications.

Social implications

The fabrics used in this research may be considered to be economical and have good THV.

Originality/value

The study proved the usefulness of fabrics made of two blends. The Chorisia component may be seen as a good alternative to cotton fibres to reduce the cost of producing high-consumption winter suit fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 February 2022

Muhammad Umair, Muhammad Usman Javaid, Yasir Nawab, Madeha Jabbar, Shagufta Riaz, Hafiz Affan Abid and Khubab Shaker

This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.

Abstract

Purpose

This paper aims to investigate the influence of picking sequence, weave design and weft yarn material on the thermal conductivity of the woven fabrics.

Design/methodology/approach

This work includes the development of 36 woven samples with two weave designs (1/1 plain and 3/1 twill), three picking sequences (single, double and three pick insertion) and six different weft yarn materials (cotton, polyester having 48 filaments, polyester with 144 filaments, spun coolmax having Lycra in core and coolmax in sheath, filament coolmax and polypropylene). The thermal conductivity was measured using ALAMBETA tester.

Findings

The results showed that weft yarn material, weave design and picking sequence have a meaningful impact on the thermal conductivity of woven fabric. The value of thermal conductivity was lowest for the fabrics with three pick insertion and 3/1 twill weave in all weft yarn materials.

Research limitations/implications

Plain woven fabric with single pick insertion is feasible for summer wear to enhance the comfort of wearer. By changing the warp yarn grouping and material, improved thermal conductivity/resistance can also be achieved.

Originality/value

The authors have studied the combined effect of different weft yarn materials with different picking sequences and different weave designs on thermal conductivity of the woven fabrics.

Details

Research Journal of Textile and Apparel, vol. 27 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 November 2022

Peter Davis Sumo, Xiaofen Ji and Liling Cai

Studies on textile upcycling in Africa are rare, particularly in Liberia, where extensive upcycling designs are appreciated throughout the country. This study aims to contribute…

Abstract

Purpose

Studies on textile upcycling in Africa are rare, particularly in Liberia, where extensive upcycling designs are appreciated throughout the country. This study aims to contribute to the upcycling literature from the perspective of Liberia’s fashion upcyclers by assessing their coping strategies and understanding the challenges confronting fashion upcycling in Monrovia’s four largest markets.

Design/methodology/approach

A fuzzy analytical hierarchy process and data envelopment analysis (DEA) models were used to assess labor input, delivery and flexibility, technological and innovation capability, financial capability, pricing of finished products, customer service and quality outputs of upcycled fashions. The fuzzy inference system model assessed upcyclers’ loaning eligibility.

Findings

The results highlight that Liberia’s fashion upcycling is expanding with varying innovative designs. The quality of upcycled fashions was deemed most important in the proposed AHP model. However, many upcycling businesses lack sufficient capital to make long-term investments. With the necessary investment, the innovation of these upcyclers could be a new line of fashion brands with great potential. In addition, using a fair judgment in assessing the little loaning funds available is paramount to enhancing their growth.

Research limitations/implications

Only 34 decision-making units were assessed. Future research could expand this scope using other models with more practical loaning strategies.

Originality/value

This study presents a wealth of managerial and policy implications. The proposed hybrid model is adequate for developing managerial decisions for fashion upcyclers. The proposed framework can manage ambiguity, inaccuracy and the complexity of making decisions based on numerous criteria, making it applicable in unearthing robust strategies for enhancing the fashion upcycling sectors and other industries in developing countries. In addition, the proposed fuzzy Mamdani system could also be extended to other sectors, such as agriculture, for a more transparent allocation of resources.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 8 March 2024

Georgy Sunny and T. Palani Rajan

The purpose of the study is to optimize the blending ratio of Arecanut and cotton fibers to create yarn with the best quality for various applications, particularly home…

Abstract

Purpose

The purpose of the study is to optimize the blending ratio of Arecanut and cotton fibers to create yarn with the best quality for various applications, particularly home furnishings. The study aims to determine the effect of different blend ratios on the physical and mechanical properties of the yarn.

Design/methodology/approach

The study involves blending Arecanut and cotton fibers in various ratios (90:10, 75:25, 50:50, 25:75 and 10:90) at two different yarn counts (10/1 and 5/1). Various physical and mechanical properties of the blended yarn are analyzed, including unevenness, coefficient of mass variation (cvm%), imperfection, hairiness, breaking strength, elongation, tenacity and breaking work.

Findings

The research findings suggest that the blend ratio of 10:90 (10% cotton and 90% Arecanut fiber) produced the best results in terms of physical and mechanical properties for both yarn counts. This blend ratio resulted in reduced unevenness, cvm% and imperfection, while also exhibiting good mechanical properties such as breaking strength, elongation, tenacity and breaking work. The blend with a higher concentration of cotton generally showed better properties due to the coarseness of Arecanut fiber. As the goal of the study was to determine the best blend ratio that included the most Arecanut fiber based on its physical and mechanical properties, which is suitable for home furnishing applications, 75:25 Areca cotton blend ratio of yarn count 5/1 proved to be the best.

Research limitations/implications

The study acknowledges that Arecanut fiber must be blended with other commercially used fibers like cotton due to its coarseness. While the study provides insights into optimizing blend ratios for home furnishings and packaging, further research may be needed to make the material suitable for clothing applications.

Practical implications

The research has practical implications for industries interested in utilizing Arecanut and cotton blends for various applications, such as home furnishings and packaging materials. It suggests that specific blend ratios can result in yarn with desirable properties for these purposes.

Social implications

The study mentions that the increased use of Arecanut fibers can benefit the growers of Arecanut, potentially providing economic opportunities for communities engaged in Arecanut farming.

Originality/value

The research explores the utilization of Arecanut fibers, an underutilized resource, in combination with cotton to create sustainable yarn. It assesses various blend ratios and their impact on yarn properties, contributing to the understanding of eco-friendly textile materials.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 61