Search results

1 – 10 of 104
Article
Publication date: 1 March 2005

G.J. Jackson, M.W. Hendriksen, R.W. Kay, M. Desmulliez, R.K. Durairaj and N.N. Ekere

The study investigates the sub process behaviour in stencil printing of typeā€6 and typeā€7 particle size distribution (PSD) Pbā€free solder pastes to assess their printing limits.

Abstract

Purpose

The study investigates the sub process behaviour in stencil printing of typeā€6 and typeā€7 particle size distribution (PSD) Pbā€free solder pastes to assess their printing limits.

Design/methodology/approach

Two solder pastes were used in a design of experiments approach to find optimal printing parameters

Findings

Solder paste printing has been achieved to ultimately produce 30ā€‰Ī¼m deposits at 60ā€‰Ī¼m pitch for full area array patterns using a typeā€7 Pbā€free solder paste. For a typeā€6 PSD solder paste, full area array printing was limited to 50ā€‰Ī¼m deposits at 110ā€‰Ī¼m pitch. However, for peripheral printing patterns, 50ā€‰Ī¼m deposits at 90ā€‰Ī¼m pitch were obtained. The disparities in the behaviour of the two paste types at different geometries can be attributed to differences in the subā€processes of the stencil printing. The paste release of the typeā€6 paste from the stencil apertures at fine pitch was superior to the typeā€7 paste, which may be attributed to the finer particle paste producing an increased drag force along the stencil aperture walls. However, the typeā€7 paste was able to fill the smallest aperture openings, ultimately to 30ā€‰Ī¼m, thus producing full array printing patterns at uniquely small pitches.

Practical implications

This advancement in the stencil printing process has been made possible by refinements to both solder paste design and stencil manufacturing technology. Adjustments in the solder paste rheology have enabled successful printing at ultra fine pitch geometries. This, together with selecting appropriate printing parameters such as printing speed, pressure, print gap and separation speed, allows a practical printing process window. Moreover, advancements in stencil fabrication methods have produced ā€œstateā€ofā€theā€artā€ stencils exhibiting very precisely defined aperture shapes, with smooth walls at very fine pitch, thus allowing for improved solder paste release at very small dimensions.

Originality/value

The results can be used to present a low cost solution for Pbā€free flip chip wafer bumping. Furthermore, the results indicate that typeā€6 and typeā€7 solder pastes should be applied to/selected for specific application geometries.

Details

Soldering & Surface Mount Technology, vol. 17 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 21 June 2013

Won‐Sang Seo and Jong‐Bong Kim

The purpose of this paper is to suggest an analysis methodology for the stencil printing process and to obtain proper design parameters that guarantee the successful filling using…

Abstract

Purpose

The purpose of this paper is to suggest an analysis methodology for the stencil printing process and to obtain proper design parameters that guarantee the successful filling using suggested finite element analyses.

Design/methodology/approach

Filling performance of solder paste in the stencil printing process is highly dependent on material properties such as viscosity and surface tension together with process parameters such as squeegee angle and squeegee speed. In order to investigate the effects of process parameters on the filling performance, the pressure builtā€up under the squeegee and the filling procedure of the solder paste into an aperture were analysed. Due to the limitations of the computational memory and time, the analysis domain was simplified. The pressure development under the squeegee was investigated for various values of squeegee angle and speed; then, the filling behaviour with the pressure boundary condition was analysed for only one aperture. Finally, the two analysis results were integrated to obtain the successful filling condition. In this analysis method, process parameters that guarantee filling performance were decided on.

Findings

It was shown that higher squeezing pressure develops as the squeegee angle decreases and the squeegee speed increases. The filling performance, however, improves as the squeegee angle and the squeegee speed decrease. This is because the pressure duration time decreases as the squeegee speed increases.

Originality/value

This study suggests a new design approach to obtain proper process design parameters for successful filling of solder paste into an aperture. The direct analysis of filling with squeegee movement is impossible due to limitations of computer memory and computation time. To overcome these limitations, a two steps analysis approach is proposed and can be effectively applied in the design of stencil screen printing.

Details

Soldering & Surface Mount Technology, vol. 25 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 February 2012

Robert Kay and Marc Desmulliez

The purpose of this paper is to present a detailed overview of the current stencil printing process for microelectronic packaging.

1261

Abstract

Purpose

The purpose of this paper is to present a detailed overview of the current stencil printing process for microelectronic packaging.

Design/methodology/approach

This paper gives a thorough review of stencil printing for electronic packaging including the current state of the art.

Findings

This article explains the different stencil technologies and printing materials. It then examines the various factors that determine the outcome of a successful printing process, including printing parameters, materials, apparatus and squeegees. Relevant technical innovations in the art of stencil printing for microelectronics packaging are examined as each part of the printing process is explained.

Originality/value

Stencil printing is currently the cheapest and highest throughput technique to create the mechanical and electrically conductive connections between substrates, bare die, packaged chips and discrete components. As a result, this process is used extensively in the electronic packaging industry and therefore such a review paper should be of interest to a large selection of the electronics interconnect and assembly community.

Details

Soldering & Surface Mount Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 April 2014

Robert W. Kay, Gerard Cummins, Thomas Krebs, Richard Lathrop, Eitan Abraham and Marc Desmulliez

Wafer-level stencil printing of a type-6 Pb-free SAC solder paste was statistically evaluated at 200 and 150ā€‰Ī¼m pitch using three different stencil manufacturing technologies…

Abstract

Purpose

Wafer-level stencil printing of a type-6 Pb-free SAC solder paste was statistically evaluated at 200 and 150ā€‰Ī¼m pitch using three different stencil manufacturing technologies: laser cutting, DC electroforming and micro-engineered electroforming. This investigation looks at stencil differences in printability, pitch resolution, maximum achievable bump height, print co-planarity, paste release efficiency, and cleaning frequency. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the authors present a statistical evaluation of the impact of stencil technology on type-6 tin-silver-copper paste printing. The authors concentrate on performances at 200 and 150ā€‰Ī¼m pitch of full array patterns. Key evaluated criteria include achievable reflowed bump heights, deposit co-planarity, paste release efficiency, and frequency of stencil cleaning. Box plots were used to graphically view print performance over a range of aperture sizes for the three stencil types.

Findings

Fabrication technologies significantly affect print performance where the micro-engineered electroformed stencil produced the highest bump deposits and the lowest bump height deviation. Second in performance was the conventional electroformed, followed by the laser-cut stencil. Comparisons between the first and fifth consecutive print demonstrated no need for stencil cleaning in the case for the micro-engineered stencil for all but the smallest spacings between apertures. High paste transfer efficiencies, i.e. above 85 per cent, were achieved with the micro-engineered stencil using low aperture area ratios of 0.5.

Originality/value

Stencil technology influences the maximum reflowed solder bump heights achievable, and bump co-planarity. To date, no statistical analysis comparing the impact of stencil technology for wafer-level bumping has been carried out for pitches of 200ā€‰Ī¼m and below. This paper gives new insight into how stencil technology impacts the print performance for fine pitch stencil printing. The volume of data collected for this investigation enabled detailed insight into the limitations of the printing process and as a result for suitable design guidelines to be developed. The finding also shows that the accepted industry guidelines on stencil design developed by the surface mount industry can be broken if the correct stencil technology is selected, thereby increasing the potential application areas of stencil printing.

Details

Soldering & Surface Mount Technology, vol. 26 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 April 2008

Z.W. Zhong

This paper attempts to review recent advances in wire bonding using insulated wire and new challenges in wire bonding for advanced microelectronics packaging.

503

Abstract

Purpose

This paper attempts to review recent advances in wire bonding using insulated wire and new challenges in wire bonding for advanced microelectronics packaging.

Design/methodology/approach

Dozens of journal articles, conference articles and patents published or issued in 2004ā€2007 are reviewed.

Findings

The advantages and problems/challenges related to wire bonding using insulated wire are briefly analysed, and several solutions to the problems and recent findings/developments related to wire bonding using insulated wire are discussed.

Research limitations/implications

Because of page limitation of the paper, only brief review is conducted. Further reading is needed for more details.

Originality/value

This paper attempts to provide introduction to recent developments and the trends in wire bonding using insulated wire. With the references provided, readers may explore more deeply by reading the original articles and patent documents.

Details

Microelectronics International, vol. 25 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 31 July 2007

Z.W. Zhong, T.Y. Tee and J‐E. Luan

This paper seeks to review recent advances in wire bonding, flip chip and leadā€free solder for advanced microelectronics packaging.

1834

Abstract

Purpose

This paper seeks to review recent advances in wire bonding, flip chip and leadā€free solder for advanced microelectronics packaging.

Design/methodology/approach

Of the 91 journal papers, 59 were published in 2005ā€2007 and topics related to wire bonding, flip chip and leadā€free solder for advanced microelectronics packaging are reviewed.

Findings

Research on advanced wire bonding is continuously performed for advanced and complex applications such as stackedā€dies wire bonding, wire bonding of lowā€k ultraā€fineā€pitch devices, and copper wire bonding. Owing to its many advantages, flip chip using adhesive has gained more popularity. Research on the reliability of leadā€free solder joints is being conducted worldā€wide. The new challenges, solutions and new developments are discussed in this paper.

Research limitations/implications

Because of page limitation of this review paper and the large number of the journal papers available, only a brief review is conducted. Further reading is needed for more details.

Originality/value

This review paper attempts to provide introduction to recent developments and the trends in terms of the topics for advanced microelectronics packaging. With the references provided, readers may explore more deeply, focusing on a particular issue.

Details

Microelectronics International, vol. 24 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 3 January 2017

Mythili Durairaj, Sivaraj Ramachandran and Rashidi Mohammad Mehdi

The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate…

Abstract

Purpose

The present investigation aims to deal with the study of unsteady, heat-generating/-absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium in the presence of cross-diffusion effects.

Design/methodology/approach

A numerical computation for the governing equations has been performed using implicit finite difference method of Crankā€“Nicolson type.

Findings

The influence of various physical parameters on velocity, temperature and concentration distributions is illustrated graphically, and the physical aspects are discussed in detail. Numerical results for average skin-friction, Nusselt number and Sherwood number are tabulated for the pertaining physical parameters. Results indicate that Soret and Dufour effects have notable influence on heat and mass transfer characteristics of the fluid when the temperature and concentration gradients are high. It is also observed that the consideration of heat generation/absorption plays a vital role in predicting the heat transfer characteristics of moving fluids.

Research limitations/implications

Consider a two-dimensional, unsteady, free convective flow of an incompressible Casson fluid over a vertical cone and a flat plate saturated with non-Darcy porous medium. The fluid properties are assumed to be constant except for density variations in the buoyancy force term. The fluid flow is moderate and the permeability of the medium is assumed to be low, so that the Forchheimer flow model is applicable.

Practical implications

The flow of Casson fluids (such as drilling muds, clay coatings and other suspensions, certain oils and greases, polymer melts and many emulsions), in the presence of heat transfer, is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs.

Social implications

In the heat and mass transfer investigations, the Casson fluid model is found to be accurately applicable in many practical situations in the wings of polymer processing industries and biomechanics, etc.; some prominent examples are silicon suspensions, suspensions of bentonite in water and lithographic varnishes used for printing inks.

Originality/value

The motivation of the present study is to bring out the effects of heat source/sink, Soret and Dufour effects on chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with non-Darcy porous medium. The flow of Casson fluids (such as certain oils and greases, polymer melts and many emulsions) in the presence of heat transfer is an important research area because of its relevance in the optimized processing of chocolate, toffee and other foodstuffs. A numerical computation for the governing equations has been performed using implicit finite difference method of the Crankā€“Nicolson type.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2009

Z.W. Zhong

This paper attempts to review recent advances in wire bonding using copper wire.

2145

Abstract

Purpose

This paper attempts to review recent advances in wire bonding using copper wire.

Design/methodology/approach

Dozens of journal and conference articles published recently are reviewed.

Findings

The problems/challenges such as wire open and short tail defects, poor bondability for stitch/wedge bonds, oxidation of Cu wire, strainā€hardening effects, and stiff wire on weak support structures are briefly analysed. The solutions to the problems and recent findings/developments in wire bonding using copper wire are discussed.

Research limitations/implications

Because of page limitation of the paper, only a brief review is conducted. Further reading is needed for more details.

Originality/value

This paper attempts to provide introduction to recent developments and the trends in wire bonding using copper wire. With the references provided, readers may explore more deeply by reading the original articles.

Details

Microelectronics International, vol. 26 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 25 October 2021

Sreedivya Kondattu Mony, Aruna Jeyanthy Peter and Devaraj Durairaj

The extensive increase in power demand has challenged the ability of power systems to deal with small-signal oscillations such as inter-area oscillations, which occur under unseen…

Abstract

Purpose

The extensive increase in power demand has challenged the ability of power systems to deal with small-signal oscillations such as inter-area oscillations, which occur under unseen operating conditions. A wide-area measurement system with a phasor measurement unit (PMU) in the power network enhances the observability of the power grid under a wide range of operating conditions. This paper aims to propose a wide-area power system stabilizer (WAPSS) based on Gaussian quantum particle swarm optimization (GQPSO) using the wide-area signals from a PMU to handle the inter-area oscillations in the system with a higher degree of controllability.

Design/methodology/approach

In the design of the wide-area stabilizer, a dead band is introduced to mitigate the influence of ambient signal frequency fluctuations. The location and the input signal of the wide-area stabilizer are selected using the participation factor and controllability index calculations. An improved particle swarm optimization (PSO) technique, namely, GQPSO, is used to optimize the variables of the WAPSS to move the unstable inter-area modes to a stable region in the s-plane, thereby improving the overall system stability.

Findings

The proposed GQPSO-based WAPSS is compared with the PSO-based WAPSS, genetic algorithm-based WAPSS and power system stabilizer. Eigenvalue analysis, time-domain simulation responses and performance index analysis are used to assess performance. The various evaluation techniques show that GQPSO WAPSS has a consistently good performance, with a higher damping ratio, faster convergence with fewer oscillations and a minimum error in the performance index analysis, indicating a more stable system with effective oscillation damping.

Originality/value

This paper proposes an optimally tuned design for the WAPSS with a wide-area input along with a dead-band structure for damping the inter-area oscillations. Tie line power is used as the input to the WAPSS and optimal tuning of the WAPSS is performed using an improved PSO algorithm, known as Gaussian quantum PSO.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 February 2020

Tanmay Basak

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of…

185

Abstract

Purpose

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of temperature and larger penetration of heating within samples vs shapes of samples (circle, square and triangular).

Design/methodology/approach

Galerkin finite element method (GFEM) with adaptive meshing in a composite domain (free space and sample) is used in an in-house computer code. The finite element meshing is done in a composite domain involving triangle embedded within a semicircular hypothetical domain. The comparison of heating pattern is done for various shapes of samples involving identical cross-sectional area. Test cases reveal that triangular samples can induce larger penetration of heat and multiple heating fronts. A representative material (beef) with high dielectric loss corresponding to larger microwave power or heat absorption in contrast to low lossy samples is considered for the current study. The average power absorption within lossy samples has been computed using the spatial distribution and finite element basis sets. Four regimes have been selected based on various local maxima of the average power for detailed investigation. These regimes are selected based on thin, thick and intermediate limits of the sample size corresponding to the constant area of cross section, Ac involving circle or square or triangle.

Findings

The thin sample limit (Regime 1) corresponds to samples with spatially invariant power absorption, whereas power absorption attenuates from exposed to unexposed faces for thick samples (Regime 4). In Regimes 2 and 3, the average power absorption non-monotonically varies with sample size or area of cross section (Ac) and a few maxima of average power occur for fixed values of Ac involving various shapes. The spatial characteristics of power and temperature have been critically analyzed for all cross sections at each regime for lossy samples. Triangular samples are found to exhibit occurrence of multiple heating fronts for large samples (Regimes 3 and 4).

Practical implications

Length scales of samples of various shapes (circle, square and triangle) can be represented via Regimes 1-4. Regime 1 exhibits the identical heating rate for lateral and radial irradiations for any shapes of lossy samples. Regime 2 depicts that a larger heating rate with larger temperature non-uniformity can occur for square and triangular-Type 1 lossy sample during lateral irradiation. Regime 3 depicts that the penetration of heat at the core is larger for triangular samples compared to circle or square samples for lateral or radial irradiation. Regime 4 depicts that the penetration of heat is still larger for triangular samples compared to circular or square samples. Regimes 3 and 4 depict the occurrence of multiple heating fronts in triangular samples. In general, current analysis recommends the triangular samples which is also associated with larger values of temperature variation within samples.

Originality/value

GFEM with generalized mesh generation for all geometries has been implemented. The dielectric samples of any shape are surrounded by the circular shaped air medium. The unified mesh generation within the sample connected with circular air medium has been demonstrated. The algorithm also demonstrates the implementation of various complex boundary conditions in residuals. The numerical results compare the heating patterns for all geometries involving identical areas. The thermal characteristics are shown with a few generalized trends on enhanced heating or targeted heating. The circle or square or triangle (Type 1 or Type 2) can be selected based on specific heating objectives for length scales within various regimes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 104