Search results

1 – 10 of 50
Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 January 2023

Eslam Taha, Mostafa Attia Mohie, Mahmoud Sayed Korany, Naglaa Aly, Alaa Ropy and Mosaad Negem

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation…

Abstract

Purpose

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation and ultraviolet (UV) degradation.

Design/methodology/approach

The protection of painting against different deterioration factors necessitates the sustainable methods and advanced techniques. Scanning electron microscopy and transmission electron microscopy have been used to investigate the morphological structure of the painting and MoS3 QDs, respectively, and optical microscopy was used to examine antibacterial activity of MoS3 QDs towards different types of bacteria. To investigate the protection of painting against deterioration, the Fourier transform IR spectroscopy (FTIR) was used to investigate the paintings left in open air for a year. Chemical composition and crystal structure of MoS3 QDs have been studied using X-ray diffraction and X-ray photoelectron spectroscopy analysis, respectively.

Findings

The addition of MoS3 nanoparticles into painted coatings enhances the durability of linseed oil-based paintings toward UV ageing regarding the change in colour which confirmed by FTIR analysis. The protection of oil painting opposed to various deterioration factors was developed by involving of MoS3 QDs in the coating of the painting. Antibacterial effect of MoS3 QDs was tested against different types of bacteria such as Pseudomonas aeruginosa confirming that the MoS3 QDs involved in the coatings of oil paintings produces a high protection layer for the paintings against several microbial attacks. In addition, coatings containing MoS3 QDs reduce the accumulation of dirt on oil paintings when subjected to open air for a year.

Originality/value

The novel MoS3 QDs was used to form a protective and transparent coating layer for the oil painting to overcome the deterioration, displays the promising protection and can be applied for different oil paintings.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2024

Wei Chen, Yucheng Ma, Xingyu Liu, Enguang Xu, Wenlong Yang, Junhong Jia, Rui Lou, Chaolong Zhu, Chenjing Wu and Ziqiang Zhao

The purpose of this paper is to improve the mechanical and tribological properties of Si3N4 ceramics and to make the application of Si3N4 ceramics as tribological materials more…

Abstract

Purpose

The purpose of this paper is to improve the mechanical and tribological properties of Si3N4 ceramics and to make the application of Si3N4 ceramics as tribological materials more extensive.

Design/methodology/approach

Si3N4-based composite ceramics (SN-2L) containing nitrogen-doped graphene quantum dots (N-GQDs) were prepared by hot press sintering process through adding 2 Wt.% nanolignin as precursor to the Si3N4 matrix, and the dry friction and wear behaviors of Si3N4-based composite against TC4 disc were performed at the different loads by using pin-on-disc tester.

Findings

The friction coefficients and wear rates of SN-2L composite against TC4 were significantly lower than those of the single-phase Si3N4 against TC4 at the load range from 15 to 45 N. At higher load of 45 N, SN-2L/TC4 pair presented the lowest friction coefficient of 0.25, and the wear rates of the pins and discs were as low as 1.76 × 10−6 and 2.59 × 10−4mm3/N·m. The low friction and wear behavior could be attributed to the detachment of N-GQDs from the ceramic matrix to the worn surface at the load of 30 N or higher, and then an effective lubricating film containing N-GQDs, SiO2, TiO2 and Al2SiO5 formed in the worn surface. While, at the same test condition, the friction coefficient of the single-phase Si3N4 against TC4 was at a range from 0.45 to 0.58. The spalling and cracking morphology formed on the worn surface of single-phase Si3N4, and the wear mechanism was mainly dominated by adhesive and abrasive wear.

Originality/value

Overall, a high-performance green ceramic composite was prepared, and the composite had a good potential for application in engineering tribology fields (such as aerospace bearings).

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0161/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 July 2024

Yidong Zhang

The purpose of this study is to adjust the electronic transport performance of zinc oxide–silicon dioxide (ZnO-SiO2) film by the construction of a grain boundary barrier.

Abstract

Purpose

The purpose of this study is to adjust the electronic transport performance of zinc oxide–silicon dioxide (ZnO-SiO2) film by the construction of a grain boundary barrier.

Design/methodology/approach

ZnO-SiO2 thin films were prepared on glass substrates by a simple sol-gel method. The crystal structure of ZnO and ZnO-SiO2 powders were tested by X-ray diffraction with copper (Cu) Kα radiation. The absorption spectra of ZnO and ZnO-SiO2 films were recorded by a ultraviolet-visible spectrophotometer. The micro electrical transport performance of ZnO-SiO2 thin films were investigated by conductive atomic force microscope and electrostatic force microscope.

Findings

The results show that the current of ZnO-SiO2 film decrease, indicating that the mobility of ZnO-SiO2 film is greatly decreased, owing to the formation of the grain boundary barrier between ZnO and SiO2. The phase variation of ZnO-SiO2 film increases due to the electron accumulation at grain boundaries.

Originality/value

ZnO and ZnO-5SiO2 thin films prepared on glass substrates by a simple sol-gel method were first studied by CAFM and EFM. The band gaps of ZnO and ZnO-5SiO2 is ∼3.05 eV and 3.15 eV, respectively. The barrier height of ZnO-5SiO2 film increased by ∼0.015 eV after introducing SiO2. The phase variation intensity increased to a certain extent after doping SiO2, due to the increased GB barrier. ZnO-5SiO2 film will be a promising ETL candidate in the application of QLEDs field.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 August 2024

Christopher Igwe Idumah, Raphael Stone Odera and Emmanuel Obumneme Ezeani

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious…

Abstract

Purpose

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious viral disease, and enabled enhancement of PPE, thereby fortifying antiviral behavior.

Design/methodology/approach

Review of a series of state of the art research papers on the subject matter.

Findings

This paper expounds on novel nanotechnological advancements in polymeric textile composites, emerging applications and fight against COVID-19 pandemic.

Research limitations/implications

As a panacea to “public droplet prevention,” textiles have proven to be potentially effective as environmental droplet barriers (EDBs).

Practical implications

PPT in form of healthcare materials including surgical face masks (SFMs), gloves, goggles, respirators, gowns, uniforms, scrub-suits and other apparels play critical role in hindering the spreading of COVID-19 and other “oral-respiratory droplet contamination” both within and outside hospitals.

Social implications

When used as double-layers, textiles display effectiveness as SFMs or surgical-fabrics, which reduces droplet transmission to <10 cm, within circumference of ∼0.3%.

Originality/value

NT advancements in textiles through nanoparticles, and sensor integration within textile materials have enhanced versatile sensory capabilities, robotics, flame retardancy, self-cleaning, electrical conductivity, flexibility and comfort, thereby availing it for health, medical, sporting, advanced engineering, pharmaceuticals, aerospace, military, automobile, food and agricultural applications, and more. Therefore, this paper expounds on recently emerging trends in nanotechnological influence in textiles for engineering and fight against COVID-19 pandemic.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 July 2024

Xiaobing Fan, Bingli Pan, Hongyu Liu, Shuang Zhao, Xiaofan Ding, Haoyu Gao, Bing Han and Hongbin Liu

This paper aims to prepare an oil-impregnated porous polytetrafluoroethylene (PTFE) composite with advanced tribological properties using citric acid as a novel pore-forming agent.

Abstract

Purpose

This paper aims to prepare an oil-impregnated porous polytetrafluoroethylene (PTFE) composite with advanced tribological properties using citric acid as a novel pore-forming agent.

Design/methodology/approach

Citric acid (CA) was used to form pores in PTFE, and then oil-impregnated PTFE composites were prepared. The pore-forming efficiency of CA was evaluated. The possible mechanism of lubrication was proposed according to the tribological properties.

Findings

The results show CA is an efficient pore-forming agent and completely removed, and the porosity of the PTFE increases with the increase of the CA content. The oil-impregnated porous PTFE exhibits an excellent tribological performance, an increased wear resistance of 77.29% was realized in comparison with neat PTFE.

Originality/value

This study enhances understanding of the lubrication mechanism of oil-impregnated porous polymers and guides for their tribological applications.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2024

Xinran Yang, Junhui Du, Hongshuo Chen, Chuanjin Cui, Haibin Liu and Xuechao Zhang

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with…

Abstract

Purpose

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with nanomaterials as channels play an important role in the field of heavy metal ion detection. This paper aims to review the research progress of silicon nanowire, graphene and carbon nanotube field-effect tube biosensors for heavy metal ion detection, so as to provide technical support and practical experience for the application and promotion of FET.

Design/methodology/approach

The article introduces the structure and principle of three kinds of FET with three kinds of nanomaterials, namely, silicon nanowires, graphene and carbon nanotubes, as the channels, and lists examples of the detection of common heavy metal ions by the three kinds of FET sensors in recent years. The article focuses on the advantages and disadvantages of the three sensors, puts forward measures to improve the performance of the FET and looks forward to its future development direction.

Findings

Compared with conventional instrumental analytical methods, FETs prepared using nanomaterials as channels have the advantages of fast response speed, high sensitivity and good selectivity, among which the diversified processing methods of graphene, the multi-heavy metal ions detection of silicon nanowires and the very low detection limit and wider detection range of carbon nanotubes have made them one of the most promising detection tools in the field of heavy metal ions detection. Of course, through in-depth analysis, this type of sensor has certain limitations, such as high cost and strict process requirements, which are yet to be solved.

Originality/value

This paper elaborates on the detection principle and classification of field-effect tube, investigates and researches the application status of three kinds of FET biosensors in the detection of common heavy metal ions. By comparing the advantages and disadvantages of each of the three sensors in practical applications, the paper focuses on the feasibility of improvement measures, looks forward to the development trend in the field of heavy metal detection and ultimately promotes the application of field-effect tube development technology to continue to progress, so that its performance continues to improve and the application field is constantly expanding.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 July 2024

Majid Monajjemi and Fatemeh Mollaamin

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human…

Abstract

Purpose

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human epidermal growth factor receptor 2 (HER2) levels (using EIS), could help in the treatment of breast cancer or not? Human epidermal growth factor receptor 2 (HER2) overexpression is an important biomarker for treatment selection in earlier stages of cancers. The combined detection of the HER2 gene in plasma for blood cancer provides an important reference index for the prognosis of metastasis to other tissues. For this purpose, the authors fabricated and characterized a model wireless biosensor-based electrochemical impedance spectroscopy (EIS) for detecting HER2 plasma as therapeutics.

Design/methodology/approach

Most sensors generally are fabricated based on a connection between component of the sensors and the external circuits through wires. Although these types of sensors provide suitable sensitivities and also quick responses, the connection wires can be limited to the sensing ability in various devices approximately. Therefore, the authors designed a wireless sensor, which can provide the advantages of in vivo sensing and also long-distance sensing, quickly.

Findings

The biosensor structure was designed for detection of HER2, HER3 and HER-4 from lab-on-chip approach with six units of screen-printed electrode (SPE), which is built of an electrochemical device of gold/silver, silver/silver or carbon electrodes. The results exhibited that the biosensor is completely selective at low concentrations of the plasma and HER2 detection via the standard addition approach has a linearity plot, therefore, by using this type of biosensors HER2 in plasma can be detected.

Originality/value

This is then followed by detecting HER2 in real plasma using standard way which proved to have great linearity (R2 = 0.991) proving that this technique can be used to detect HER2 solution in real patients.

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

1216

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 50