Search results

1 – 10 of over 1000
Article
Publication date: 3 January 2017

Meghdad Tourandaz Kenari, Mohammad Sadegh Sepasian and Mehrdad Setayesh Nazar

The purpose of this paper is to present a new cumulant-based method, based on the properties of saddle-point approximation (SPA), to solve the probabilistic load flow (PLF…

Abstract

Purpose

The purpose of this paper is to present a new cumulant-based method, based on the properties of saddle-point approximation (SPA), to solve the probabilistic load flow (PLF) problem for distribution networks with wind generation.

Design/methodology/approach

This technique combines cumulant properties with the SPA to improve the analytical approach of PLF calculation. The proposed approach takes into account the load demand and wind generation uncertainties in distribution networks, where a suitable probabilistic model of wind turbine (WT) is used.

Findings

The proposed procedure is applied to IEEE 33-bus distribution test system, and the results are discussed. The output variables, with and without WT connection, are presented for normal and gamma random variables (RVs). The case studies demonstrate that the proposed method gives accurate results with relatively low computational burden even for non-Gaussian probability density functions.

Originality/value

The main contribution of this paper is the use of SPA for the reconstruction of probability density function or cumulative distribution function in the PLF problem. To confirm the validity of the method, results are compared with Monte Carlo simulation and Gram–Charlier expansion results. From the viewpoint of accuracy and computational cost, SPA almost surpasses other approximations for obtaining the cumulative distribution function of the output RVs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Qing Xiao and Shaowu Zhou

Unscented transformation (UT) and point estimate method (PEM) are two efficient algorithms for probabilistic power flow (PPF) computation. This paper aims to show the relevance…

Abstract

Purpose

Unscented transformation (UT) and point estimate method (PEM) are two efficient algorithms for probabilistic power flow (PPF) computation. This paper aims to show the relevance between UT and PEM and to derive a rule to determine the accuracy controlling parameters for UT method.

Design/methodology/approach

The authors derive the underlying sampling strategies of UT and PEM and check them in different probability spaces, where quadrature nodes are selected.

Findings

Gauss-type quadrature rule can be used to determine the accuracy controlling parameters of UT. If UT method and PEM select quadrature nodes in two probability spaces related by a linear transform, these two algorithms are equivalent.

Originality/value

It shows that UT method can be conveniently extended to (km + 1) scheme (k = 4; 6; : : : ) by Gauss-type quadrature rule.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 May 2021

Yogambari Venkatesan and Aravindhababu Palanivelu

The purpose of the paper is to develop a simple, efficient and robust power flow (PF) method for ill-conditioned distribution networks (DNs).

Abstract

Purpose

The purpose of the paper is to develop a simple, efficient and robust power flow (PF) method for ill-conditioned distribution networks (DNs).

Design/methodology/approach

It first formulates the PF problem as an optimization problem of minimizing the node power mismatches, while treating the corrections of node voltages as problem variables and then uses soccer game optimization (SGO), an artificial intelligent algorithm simulating the behavior of soccer game players in scoring goals, in solving the formulated PF problem.

Findings

It studies the performances of the developed method on four standard test DNs and exhibits that the method is superior in respect of accuracy, robustness and computational speed than those of existing methods.

Originality/value

It suggests a novel and new PF method using SGO and portrays that the proposed method is as accurate as any other PF method, robust like non-Newton type of PF methods and faster than Newton type of PF methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 January 2021

Yerzhigit Bapin and Vasilios Zarikas

This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and…

Abstract

Purpose

This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and bivariate parametric models, conventional intra and inter-zonal spinning reserve capacity as well as demand response through utilization of capacity outage probability tables and the equivalent assisting unit approach.

Design/methodology/approach

The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern probability density function (PDF). The study also uses the Bayesian network (BN) algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

Findings

The results show that the utilization of bivariate wind prediction model along with reserve allocation adjustment algorithm improve reliability of the power grid by 2.66% and reduce the total system operating costs by 1.12%.

Originality/value

The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern PDF. The study also uses the BN algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

Article
Publication date: 4 September 2018

Muhannad Aldosary, Jinsheng Wang and Chenfeng Li

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in…

Abstract

Purpose

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in engineering practice, arising from such diverse sources as heterogeneity of materials, variability in measurement, lack of data and ambiguity in knowledge. Academia and industries have long been researching for uncertainty quantification (UQ) methods to quantitatively account for the effects of various input uncertainties on the system response. Despite the rich literature of relevant research, UQ is not an easy subject for novice researchers/practitioners, where many different methods and techniques coexist with inconsistent input/output requirements and analysis schemes.

Design/methodology/approach

This confusing status significantly hampers the research progress and practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts of UQ are most focused in two largely separate research fields: structural reliability analysis (SRA) and stochastic finite element method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, covering both technology and application aspects. Moreover, unlike standard survey papers that focus primarily on description and explanation, a thorough and rigorous comparative study is performed to test all UQ methods reviewed in the paper on a common set of reprehensive examples.

Findings

Over 20 uncertainty quantification methods in the fields of structural reliability analysis and stochastic finite element methods are reviewed and rigorously tested on carefully designed numerical examples. They include FORM/SORM, importance sampling, subset simulation, response surface method, surrogate methods, polynomial chaos expansion, perturbation method, stochastic collocation method, etc. The review and comparison tests comment and conclude not only on accuracy and efficiency of each method but also their applicability in different types of uncertainty propagation problems.

Originality/value

The research fields of structural reliability analysis and stochastic finite element methods have largely been developed separately, although both tackle uncertainty quantification in engineering problems. For the first time, all major uncertainty quantification methods in both fields are reviewed and rigorously tested on a common set of examples. Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing objective evidence-based information for further research and practical applications.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2017

Qi Zhou, Ping Jiang, Xinyu Shao, Hui Zhou and Jiexiang Hu

Uncertainty is inevitable in real-world engineering optimization. With an outer-inner optimization structure, most previous robust optimization (RO) approaches under interval…

Abstract

Purpose

Uncertainty is inevitable in real-world engineering optimization. With an outer-inner optimization structure, most previous robust optimization (RO) approaches under interval uncertainty can become computationally intractable because the inner level must perform robust evaluation for each design alternative delivered from the outer level. This paper aims to propose an on-line Kriging metamodel-assisted variable adjustment robust optimization (OLK-VARO) to ease the computational burden of previous VARO approach.

Design/methodology/approach

In OLK-VARO, Kriging metamodels are constructed for replacing robust evaluations of the design alternative delivered from the outer level, reducing the nested optimization structure of previous VARO approach into a single loop optimization structure. An on-line updating mechanism is introduced in OLK-VARO to exploit the obtained data from previous iterations.

Findings

One nonlinear numerical example and two engineering cases have been used to demonstrate the applicability and efficiency of the proposed OLK-VARO approach. Results illustrate that OLK-VARO is able to obtain comparable robust optimums as to that obtained by previous VARO, while at the same time significantly reducing computational cost.

Practical implications

The proposed approach exhibits great capability for practical engineering design optimization problems under interval uncertainty.

Originality/value

The main contribution of this paper lies in the following: an OLK-VARO approach under interval uncertainty is proposed, which can significantly ease the computational burden of previous VARO approach.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 July 2011

Dianyin Hu, Rongqiao Wang and Zhi Tao

A probabilistic‐based design for turbine disk at high temperature can quantify risk and thus identify areas of possible overdesign (conservatism). Moreover, the need for…

1060

Abstract

Purpose

A probabilistic‐based design for turbine disk at high temperature can quantify risk and thus identify areas of possible overdesign (conservatism). Moreover, the need for cost‐effective designs has resulted in the development of probabilistic design to quantify the effects of these uncertainties so as to improve the reliability of the component. This paper aims to address these issues.

Design/methodology/approach

The flow for probabilistic design established through investigating traditional design methods of the turbine disk at high temperature is divided into the processes of crack initiation and crack growth to find important design inputs at each course, where the probabilistic design criterion has been built based on the deterministic criteria and successful experiences.

Findings

The probabilistic‐based design procedure has been demonstrated by taking the reliability design of crack initiation process for turbine disk as the example. The reliability analysis for the disk life after optimization analysis was completed by considering random parameters reflecting the uncertainties. The results showed there was a margin in design for disk life referred to as the probabilistic criterion. This measure was taken by redesigning the structure to reduce the disk's weight within the range of reliability.

Practical implications

The present study provides a method to design aero‐engine components based on probabilistic design for further research.

Social implications

Moreover, the present study provides a way to design structures based on probabilistic design.

Originality/value

It is proved that probabilistic‐based design could produce a lower weight turbine disk by integrating well‐proved deterministic design methods and tools with probabilistic design techniques while maintaining low failure probability.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 November 2003

Rama Subba Reddy Gorla and Nagasekhar Reddy Gorla

Fluid flow in a circular pipe and a slider bearing was computationally simulated by finite element methods and probabilistically evaluated in view of the several uncertainties in…

Abstract

Fluid flow in a circular pipe and a slider bearing was computationally simulated by finite element methods and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for the flow rate and load bearing capacity of the slider bearing due to the several random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in fluid flow and to the identification of both the most critical measurements and parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2015

Chengwei Fei, Wenzhong Tang, Guangchen Bai and Shuang Ma

This paper aims to reasonably quantify the radial deformation of turbine blade from a probabilistic design perspective. A probabilistic design for turbine blade radial deformation…

Abstract

Purpose

This paper aims to reasonably quantify the radial deformation of turbine blade from a probabilistic design perspective. A probabilistic design for turbine blade radial deformation considering non-linear dynamic influences can quantify risk and thus control blade tip clearance to further develop the high performance and high reliability of aeroengine. Moreover, the need for a cost-effective design has resulted in the development of probabilistic design method with high computational efficiency and accuracy to quantify the effects of these uncertainties.

Design/methodology/approach

An extremum response surface method-based support vector machine (SVM-ERSM) was proposed based on SVM of regression to improve the computational efficiency and precision of blade radial deformation dynamic probabilistic design regarding non-linear material properties and dynamically thermal and mechanical loads.

Findings

Through the example calculation and comparison of methods, the results show that the blade radial deformation reaches at the maximum at t = 180 s; the probabilistic distribution and inverse probabilistic features of output parameters and the major factors (rotor speed and gas temperature) are gained; besides, the SVM-ERSM holds high computational efficiency and precision in the non-linear dynamic probabilistic design of aeroengine typical components.

Practical implications

The present efforts provide a method to design turbine besides other aeroengine components considering dynamic and non-linear factors base on probabilistic design for further research.

Social implications

Moreover, the present study provides a way to design dynamic (motion) structures from a probabilistic perspective.

Originality/value

It is proved that the dynamic probabilistic design-based SVM-ERSM could produce a more reasonable blade radial deformation while maintaining low failure probability, as well as offer a useful reference for blade-tip clearance control and a promising insight to the optimal design of aeroengine typical components.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 28 December 2021

Costas D. Kalfountzos, George S.E. Bikakis and Efstathios E. Theotokoglou

The purpose of this paper is to study the deterministic elastic buckling behavior of cylindrical fiber–metal laminate panels subjected to uniaxial compressive loading and the…

Abstract

Purpose

The purpose of this paper is to study the deterministic elastic buckling behavior of cylindrical fiber–metal laminate panels subjected to uniaxial compressive loading and the investigation of GLAss fiber-REinforced aluminum laminate (GLARE) panels using probabilistic finite element method (FEM) analysis.

Design/methodology/approach

The FEM in combination with the eigenvalue buckling analysis is used for the construction of buckling coefficient–curvature parameter diagrams of seven fiber–metal laminate grades, three glass-fiber composites and monolithic 2024-T3 aluminum. The influences of uncertainties concerning material properties and laminate dimensions on the buckling load are studied with sensitivity analyses.

Findings

It is found that aluminum has a stronger impact on the buckling behavior of the fiber–metal laminate panels than their constituent uni-directional or woven composites. For the classical simply supported boundary conditions, it is found that there is an approximately linear relation between the buckling coefficient and the curvature parameter when the diagrams are plotted in double logarithmic scale. The probabilistic calculations demonstrate that there is a considerable probability to overestimate the buckling load of GLARE panels with deterministic calculations.

Originality/value

In this study, the deterministic and probabilistic buckling response of fiber metal laminate panels is investigated. It is shown that realistic structural uncertainties could substantially affect the buckling strength of aerospace components.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 1000