Search results

1 – 10 of over 14000
Article
Publication date: 18 May 2020

Ezzeddine Touti, Ali Sghaier Tlili and Muhannad Almutiry

This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions…

Abstract

Purpose

This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions that are assumed to be uncertain but quadratically bounded.

Design/methodology/approach

Sufficient conditions, under which the designed control scheme can achieve the asymptotic stabilization of the augmented system, are developed within the Lyapunov theory in the framework of linear matrix inequalities (LMIs).

Findings

The derived LMIs are formulated under the form of an optimization problem whose resolution allows the concurrent computation of the decentralized control and observation gains and the maximization of the nonlinearity coverage tolerated by the system without becoming unstable. The reliable performances of the designed control scheme, compared to a distinguished decentralized guaranteed cost control strategy issued from the literature, are demonstrated by numerical simulations on an extensive application of a three-generator infinite bus power system.

Originality/value

The developed optimization problem subject to LMI constraints is efficiently solved by a one-step procedure to analyze the asymptotic stability and to synthesize all the control and observation parameters. Therefore, such a procedure enables to cope with the conservatism and suboptimal solutions procreated by optimization problems based on iterative algorithms with multi-step procedures usually used in the problem of dynamic output feedback decentralized control of nonlinear interconnected systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 April 2020

Deepesh Sharma and Naresh Kumar Yadav

In computer application scenario, data mining task is rarely utilized in power system, as an enhanced part, this work presented data mining task in power systems, to overcome…

Abstract

Purpose

In computer application scenario, data mining task is rarely utilized in power system, as an enhanced part, this work presented data mining task in power systems, to overcome frequency deviation issues. Load frequency control (LFC) is a primary challenging problem in an interconnected multi-area power system.

Design/methodology/approach

This paper adopts lion algorithm (LA) for the LFC of two area multi-source interconnected power systems. The LA calculates the optimal gains of the fractional order PI (FOPI) controller and hence the proposed LA-based FOPI controller (LFOPI) is developed.

Findings

For the performance analysis, the proposed algorithm compared with various algorithm is given as, 80.6% lesser than the FOPI algorithm, 2.5% lesser than the GWO algorithm, 2.5% lesser than the HSA algorithm, 4.7% lesser than the BBO algorithm, 1.6% lesser than PSO algorithm and 80.6% lesser than the GA algorithm.

Originality/value

The LFOPI controller is the proposed controlling method, which is nothing but the FOPI controller that gets the optimal gain using the LA. This method produces better performance in terms of converging behavior, optimization of controller gain, transient profile and steady-state response.

Details

Data Technologies and Applications, vol. 54 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 11 January 2021

Yerzhigit Bapin and Vasilios Zarikas

This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and…

Abstract

Purpose

This study aims to introduce a methodology for optimal allocation of spinning reserves taking into account load, wind and solar generation by application of the univariate and bivariate parametric models, conventional intra and inter-zonal spinning reserve capacity as well as demand response through utilization of capacity outage probability tables and the equivalent assisting unit approach.

Design/methodology/approach

The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern probability density function (PDF). The study also uses the Bayesian network (BN) algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

Findings

The results show that the utilization of bivariate wind prediction model along with reserve allocation adjustment algorithm improve reliability of the power grid by 2.66% and reduce the total system operating costs by 1.12%.

Originality/value

The method uses a novel approach to model wind power generation using the bivariate Farlie–Gumbel–Morgenstern PDF. The study also uses the BN algorithm to perform the adjustment of spinning reserve allocation, based on the actual unit commitment of the previous hours.

Article
Publication date: 15 March 2022

Ranjitha K., Sivakumar P. and Monica M.

This study aims to implement an improved version of the Chimp algorithm (IChimp) for load frequency control (LFC) of power system.

Abstract

Purpose

This study aims to implement an improved version of the Chimp algorithm (IChimp) for load frequency control (LFC) of power system.

Design/methodology/approach

This work was adopted by IChimp to optimize proportional integral derivative (PID) controller parameters used for the LFC of a two area interconnected thermal system.

Findings

The supremacy of proposed IChimp tuned PID controller over Chimp optimization, direct synthesis-based PID controller, internal model controller tuned PID controller and recent algorithm based PID controller was demonstrated.

Originality/value

IChimp has good convergence and better search ability. The IChimp optimized PID controller is the proposed controlling method, which ensured better performance in terms of converging behaviour, optimizing controller gains and steady-state response.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Anan Zhang, Fan Zhang, Zhi Li, Qian Li, Xuliang Zhang and Jing Wang

With the growing scale of power grids, integrated power grids often contain multiple areas. When the control centre of each regional grid conducts an assessment of local voltage…

Abstract

Purpose

With the growing scale of power grids, integrated power grids often contain multiple areas. When the control centre of each regional grid conducts an assessment of local voltage stability, the calculation is always based on the local regional power grid model. However, less consideration is given to a detailed model of the entire network, which may lead to a large calculation error. Under the premise of ensuring the data and information security of Supervisory Control and Data Acquisition between different regional power grid operation control centres, the purpose of this paper is to reduce calculation error simply by using the data of a local power network.

Design/methodology/approach

According to the calculation methodology of “decomposition and coordination” and the power balance equation of an interconnected power grid, an improved radial equivalent independent (REI) equivalent method, which can reflect the dynamic characteristics of interconnected power grids to a certain extent, is proposed in this paper. A mathematical model of multi-area-grid L indicator synergic computing is derived as well.

Findings

With the calculation of Institute of Electrical and Electronics Engineers (IEEE) standard grids and an actual grid model, it is proven that the method proposed in this paper can significantly improve the accuracy of the regional power grid L indicator calculation and achieve the synergic computing of a multi-area power system L indicator, without an increase in data interaction among the regional power grids.

Originality/value

The indicator of voltage stability among multi-area was obtained by using the improved REI equivalent method with the change of the load participation factor. Particularly, the coordinated calculation method can be implemented on a local power grid without knowledge of all the parameters of its interconnection, which can avoid possible leakage of confidential data and information of the system owners.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 December 2017

Prasenjit Dey, Aniruddha Bhattacharya and Priyanath Das

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are…

1723

Abstract

This paper reports a new technique for achieving optimized design for power system stabilizers. In any large scale interconnected systems, disturbances of small magnitudes are very common and low frequency oscillations pose a major problem. Hence small signal stability analysis is very important for analyzing system stability and performance. Power System Stabilizers (PSS) are used in these large interconnected systems for damping out low-frequency oscillations by providing auxiliary control signals to the generator excitation input. In this paper, collective decision optimization (CDO) algorithm, a meta-heuristic approach based on the decision making approach of human beings, has been applied for the optimal design of PSS. PSS parameters are tuned for the objective function, involving eigenvalues and damping ratios of the lightly damped electromechanical modes over a wide range of operating conditions. Also, optimal locations for PSS placement have been derived. Comparative study of the results obtained using CDO with those of grey wolf optimizer (GWO), differential Evolution (DE), Whale Optimization Algorithm (WOA) and crow search algorithm (CSA) methods, established the robustness of the algorithm in designing PSS under different operating conditions.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 9 January 2007

M.A. El‐Kady, B.A. Alaskar, A.M. Shaalan and B.M. Al‐Shammri

The purpose of this paper is to present a practical method for computing contingency‐based reliability and quality indices in power systems and to answer questions related to how…

1930

Abstract

Purpose

The purpose of this paper is to present a practical method for computing contingency‐based reliability and quality indices in power systems and to answer questions related to how much the system is reliable, how robust it is in surviving random contingencies, how much it is costing to maintain appropriate system security and reliability levels and, finally, to what extent the desired balance is maintained between generation facilities, transmission capabilities and consumer demand levels in various zones of the electric power system.

Design/methodology/approach

The methodology adopted in this paper is based on a combined contingency analysis/reliability evaluation scheme. A three‐component system model is utilized, which can be used effectively for evaluation and sensitivity analysis of reliability and quality in power systems. The model is a reduced (equivalent) system representation that comprises generation, transmission and load components with multi‐state values. The computational scheme presented in the paper integrates both the contingency effect and its probability of occurrence into one routine of analysis while reducing the power system around the region of interest.

Findings

The computational scheme presented in the paper can effectively assess both service reliability and system quality. The practical applications presented demonstrated that lower service reliability levels would jeopardize energy supply continuity and increase the likelihood of additional maintenance and restoration costs due to the resulting higher rate of system outages. Poor system quality levels, on the other hand, imply either deficiency or excess in the overall system capabilities as designed by its planners.

Originality/value

The work of this paper contributes to the solution of the reliability and quality assessment problem in practical power systems. As part of the present work, an advanced computerized scheme for fast composite system reliability and quality assessment was developed and then applied to an equivalent system model of the Saudi electricity system. The results obtained are claimed to have far‐reaching implications on various planning and operation aspects of the power system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 March 2019

Prakash Chandra Sahu, Ramesh Chandra Prusty and Sidhartha Panda

The paper has proposed to implement gray wolf optimization (GWO)-based filter-type proportional derivative with (FPD) plus (1+ proportional integral) multistage controller in a…

Abstract

Purpose

The paper has proposed to implement gray wolf optimization (GWO)-based filter-type proportional derivative with (FPD) plus (1+ proportional integral) multistage controller in a three-area integrated source-type interlinked power network for achieving automatic generation control.

Design/methodology/approach

For analysis, a three area interconnected power system of which each area comprises three different generating units where thermal and hydro system as common. Micro sources like wind generator, diesel generator and gas unit are integrated with area1, area2 and area3 respectively. For realization of system nonlinearity some physical constraints like generation rate constraint, governor dead band and boiler dynamics are effected in the system.

Findings

The supremacy of multistage controller structure over simple proportional integral (PI), proportional integral, derivative (PID) and GWO technique over genetic algorithm, differential evolution techniques has been demonstrated. A comparison is made on performances of different controllers and sensitivity analysis on settling times, overshoots and undershoots of different dynamic responses of system as well as integral based error criteria subsequent a step load perturbation (SLP). Finally, sensitive analysis has been analyzed by varying size of SLP and network parameters in range ±50 per cent from its nominal value.

Originality/value

Design and implementation of a robust FPD plus (1 + PI) controller for AGC of nonlinear power system. The gains of the proposed controller are optimized by the application of GWO algorithm. An investigation has been done on the dynamic performances of the suggested system by conducting a comparative analysis with conventional PID controller tuned by various optimization techniques to verify its supremacy. Establishment of the robustness and sensitiveness of the controller by varying the size and position of the SLP, varying the loading of the system randomly and varying the time constants of the system.

Article
Publication date: 7 November 2016

Luis Conde-López, Guillermo Gutiérrez-Alcaraz and S.N. Singh

Long-term reliability analysis of generation capacity based on the forecasted load demand helps to identify the optimal generation expansion plan of the system. This paper…

Abstract

Purpose

Long-term reliability analysis of generation capacity based on the forecasted load demand helps to identify the optimal generation expansion plan of the system. This paper analyzes the generation adequacy of Mexico’s National Interconnected Power System (MNIPS) using loss of load expectation (LOLE) and loss of energy expectation (LOEE) indices.

Design/methodology/approach

These indices are calculated through an analytical (recursive) method and are then compared with values recommended by the North American Electric Reliability Council (NERC). Weekly indices are computed to analyze the load curtailment options that may occur in some periods.

Findings

Forecasted values, including load and generation capacity considering maintenance schedules, additions of new generating units and permanently shut down units in accordance with the long-term expanding-system plan have been considered. The load forecast uncertainty is also included.

Originality/value

This is original work.

Details

International Journal of Energy Sector Management, vol. 10 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 8 May 2018

Mostafa Kheshti and Xiaoning Kang

Distribution network protection is a complicated problem and mal-operation of the protective relays due to false settings make the operation of the network unreliable. Besides…

Abstract

Purpose

Distribution network protection is a complicated problem and mal-operation of the protective relays due to false settings make the operation of the network unreliable. Besides, obtaining proper settings could be very complicated. This paper aims to discuss an innovative evolutionary Lightning Flash Algorithm (LFA) which is developed for solving the relay coordination problems in distribution networks. The proposed method is inspired from the movements of cloud to ground lightning strikes in a thunderstorm phenomenon. LFA is applied on three case study systems including ring, interconnected and radial distribution networks. The power flow analysis is performed in Digsilent Power Factory software; then the collected data are sent to MATLAB software for optimization process. The proposed algorithm provides optimum time multiplier setting and plug setting of all digital overcurrent relays in each system. The results are compared with other methods such as particle swarm optimization and genetic algorithm. The result comparisons demonstrate that the proposed LFA can successfully obtain proper relay settings in distribution networks with faster speed of convergence and lower total operation time of relays. Also, it shows the superiority and effectiveness of this method against other algorithms.

Design/methodology/approach

A novel LFA is designed based on the movements of cloud to ground lightning strikes in a thunderstorm. This method is used to optimally adjust the time multiplier setting and plug setting of the relays in distribution system to provide a proper coordination scheme.

Findings

The proposed algorithm was tested on three case study systems, and the results were compared with other methods. The results confirmed that the proposed method could optimally adjust the relay settings in the electric distribution system to provide a proper protection scheme.

Practical implications

The practical implications can be conducted on distribution networks. The studies provided in this paper approve the practical application of the proposed method in providing proper relay protection in real power system.

Originality/value

This paper proposes a new evolutionary method derived from the movements of cloud to ground lightning strikes in thunderstorm. The proposed method can be used as an optimization toolbox to solve complex optimization problems in practical engineering systems.

1 – 10 of over 14000