Search results

11 – 20 of over 1000
Article
Publication date: 27 June 2008

Y‐J. Lin and Suresh V. Venna

The purpose of this paper is to propose an effective and novel methodology to determine optimal location of piezoelectric transducers for passive vibration control of…

Abstract

Purpose

The purpose of this paper is to propose an effective and novel methodology to determine optimal location of piezoelectric transducers for passive vibration control of geometrically complicated structures and shells with various curvatures. An industry‐standard aircraft leading‐edge structure is considered for the actuator placement analysis and experimental verification.

Design/methodology/approach

The proposed method is based on finite element analysis of the underlying structure having a thin layer of piezoelectric elements covering the entire inner surface with pertinent boundary conditions. All the piezoelectric properties are incorporated into the elements. Specifically, modal piezoelectric analysis is performed to provide computed tomography for the evaluations of the electric potential distributions on these piezoelectric elements attributed by the first bending and torsional modes of structural vibration. Then, the outstanding zone(s) yielding highest amount of electric potentials can be identified as the target location for the best actuator placement.

Findings

Six piezoelectric vibration absorbers are determined to be placed alongside both of the fixed edges. An experimental verification of the aluminum leading edge's vibration suppression using the proposed method is conducted exploiting two resistive shunt circuits for the passive damping. A good agreement is obtained between the analytical and experimental results. In particular, vibration suppression around 30 and 25 per cent and Q‐factor reduction up to 15 and 10 per cent are obtained in the designated bending and torsional modes, respectively. In addition, some amount of damping improvement is observed at higher modes of vibration as well.

Research limitations/implications

The frequency in the proposed approach will be increased slowly and gradually from 0 to 500 Hz. When the frequency matches the natural frequency of the structure, owing to the resonant condition the plate will vibrate heavily. The vibrations of the plate can be observed by connecting a sensor to an oscilloscope. Owing to the use of only one sensor, not all the modes can be detected. Only the first few modes can be picked up by the sensor, because of its location.

Practical implications

This method can also be used in optimizing not only the location but also the size and shape of the passive vibration absorber to attain maximum amount of damping. This can be achieved by simply changing the dimensions and shape of the piezoelectric vibration absorber in the finite element model on an iterative basis to find the configuration that gives maximum electric potential.

Originality/value

The determination of optimal location(s) for piezoelectric transducers is very complicated and difficult if the geometry of structures is curved or irregular. Therefore, it has never been reported in the literature. Here an efficient FEA‐based electric potential tomography method is proposed to identify the optimized locations for the PZT transducers for passive vibration control of geometrically complicated structures, with minimal efforts. In addition, this method will facilitate the determination of electric potentials that would be obtained at all the possible locations for piezoelectric transducers and hence makes it possible to optimize the placement and configurations of the candidate transducers on complex shape structures.

Details

Sensor Review, vol. 28 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 April 2020

Chengdong Yuan, Siyang Hu and Tamara Bechtold

Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the stability…

Abstract

Purpose

Based on the framework of Krylov subspace-based model order reduction (MOR), compact models of the piezoelectric energy harvester devices can be generated. However, the stability of reduced piezoelectric model often cannot be preserved. In previous research studies, “MOR after Schur,” “Schur after MOR” and “multiphysics structure preserving MOR” methods have proven successful in obtaining stable reduced piezoelectric energy harvester models. Though the stability preservation of “MOR after Schur” and “Schur after MOR” methods has already been mathematically proven, the “multiphysics structure preserving MOR” method was not. This paper aims to provide the missing mathematical proof of “multiphysics structure preserving MOR.”

Design/methodology/approach

Piezoelectric energy harvesters can be represented by system of differential-algebraic equations obtained by the finite element method. According to the block structure of its system matrices, “MOR after Schur” and “Schur after MOR” both perform Schur complement transformations either before or after the MOR process. For the “multiphysics structure preserving MOR” method, the original block structure of the system matrices is preserved during MOR. 

Findings

This contribution shows that, in comparison to “MOR after Schur” and “Schur after MOR” methods, “multiphysics structure preserving MOR” method performs the Schur complement transformation implicitly, and therefore, stabilizes the reduced piezoelectric model.

Originality/value

The stability preservation of the reduced piezoelectric energy harvester model obtained through “multiphysics structure preserving MOR” method is proven mathematically and further validated by numerical experiments on two different piezoelectric energy harvester devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2017

Darko Belavič, Andraž Bradeško, Tomaz Kos and Tadej Rojac

In this contribution, the design and integration of a piezoelectric vibrating device into low-temperature, co-fired ceramic (LTCC) structures are presented and discussed. The…

Abstract

Purpose

In this contribution, the design and integration of a piezoelectric vibrating device into low-temperature, co-fired ceramic (LTCC) structures are presented and discussed. The mechanical vibration of the diaphragm was stimulated with a piezoelectric actuator, which was integrated onto the diaphragm. Three different methods for the integration were designed, fabricated and evaluated.

Design/methodology/approach

The vibrating devices were designed as an edge-clamped diaphragm with an integrated piezoelectric actuator at its centre, whose role is to stimulate the vibration of the diaphragm via the converse piezoelectric effect. The design and feasibility study of the vibrating devices was supported by analytical methods and finite-element analyses.

Findings

The benchmarking of the ceramic vibrating devices showed that the thick-film piezoelectric actuator responds weakly in comparison with both the bulk actuators. On the other hand, the thick-film actuator has the lowest dissipation factor and it generates the largest displacement of the diaphragm with the lowest driving voltage. The resonance frequency of the vibrating device with the thick-film actuator is the most sensitive for an applied load (i.e. mass or pressure).

Research limitations/implications

Research activity includes the design and the fabrication of a piezoelectric vibrating device in the LTCC structure. The research work on the piezoelectric properties of integrated piezoelectric actuators was limited.

Practical implications

Piezoelectric vibrating devices were used as pressure sensors.

Originality/value

Piezoelectric vibrating devices could be used not only for pressure sensors but also for other type of sensors and detectors and for microbalances.

Details

Microelectronics International, vol. 34 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 January 2022

Xiang Li, Keyi Wang, Yan Lin Wang and Kui Cheng Wang

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture…

Abstract

Purpose

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture plays a critical role for rehabilitation, footwear design, clinical diagnostics and sports activities, and so on. This paper aims to review plantar force measurement technologies based on piezoelectric materials, which can make the reader understand preliminary works systematically and provide convenience for researchers to further study.

Design/methodology/approach

The review introduces working principle of piezoelectric sensor, structures and hardware design of plantar force measurement systems based on piezoelectric materials. The structures of sensors in plantar force measurement systems can be divided into four kinds, including monolayered sensor, multilayered sensor, tri-axial sensor and other sensor. The previous studies about plantar force measurement system based on piezoelectric technology are reviewed in detail, and their characteristics and performances are compared.

Findings

A good deal of measurement technologies have been studied by researchers to detect and analyze the plantar force. Among these measurement technologies, taking advantage of easy fabrication and high sensitivity, piezoelectric sensor is an ideal candidate sensing element. However, the number and arrangement of the sensors will influence the characteristics and performances of plantar force measurement systems. Therefore, it is necessary to further study plantar force measurement system for better performances.

Originality/value

So far, many plantar force measurement systems have been proposed, and several reviews already introduced plantar force measurement systems in the aspect of types of pressure sensors, experimental setups for foot pressure measurement analysis and the technologies used in plantar shear stress measurements. However, this paper reviews plantar force measurement systems based on piezoelectric materials. The structures of piezoelectric sensors in the measurement systems are discussed. Hardware design applied to measurement system is summarized. Moreover, the main point of further study is presented in this paper.

Article
Publication date: 8 August 2016

Zichao Liu, Wei Pan, Changhou Lu and Yongtao Zhang

This paper aims to establish an accurate mathematical model of a piezoelectric membrane restrictor that can be applied to control the shaft’s centerline orbit.

Abstract

Purpose

This paper aims to establish an accurate mathematical model of a piezoelectric membrane restrictor that can be applied to control the shaft’s centerline orbit.

Design/methodology/approach

The methodology uses three coupled equations to establish a mathematical model of the piezoelectric membrane restrictor – Reynolds equation, the membrane deformation equation and the flow rate equation. A data identification method is used to propose the flow rate formulas for the piezoelectric membrane restrictor.

Findings

It has been found that the structural parameters, the membrane center deformation and the inlet and outlet pressures of the piezoelectric membrane restrictor have an effect on the static performance of the restrictor. The identified flow rate result of the piezoelectric membrane restrictor is consistent with the models.

Originality/value

The paper provides an accurate mathematical model of the piezoelectric membrane restrictor which can also be applied to other membrane restrictors.

Details

Industrial Lubrication and Tribology, vol. 68 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 September 2013

Nataraj Chandrasekharan, Jaehyung Ju and Lonny Thompson

A three-dimensional finite element (FE) model is developed to design a vibrating bimorph piezoelectric cantilever beam with lead zirconate titanate (PZT-5H) for energy harvesting…

Abstract

Purpose

A three-dimensional finite element (FE) model is developed to design a vibrating bimorph piezoelectric cantilever beam with lead zirconate titanate (PZT-5H) for energy harvesting. The paper aims to discuss these issues.

Design/methodology/approach

A parametric study of electric power generated as a function of the dielectric constant, transverse piezoelectric strain constant, length and thickness of the piezoelectric material, is conducted for a time-harmonic surface pressure load. Transversely isotropic elastic and piezoelectric properties are assigned to the bimorph layers with brass chosen as the substrate material in the three-dimensional FE model. Using design of experiments, a study was conducted to determine the sensitivity of power with respect to the geometric and material variables.

Findings

The numerical analysis shows that a uniform decrease in thickness and length coverage of the piezoelectric layers results in a nonlinear reduction in power amplitude, which suggests optimal values. The piezoelectric strain coefficient, d31 and the thickness of PZT-5H, tp, are the most important design parameters to generate high electric energy for bimorph vibration harvesting device.

Originality/value

The work demonstrates that, through a sensitivity analysis, the electro-mechanical piezoelectric coupling coefficient (d31) and the thickness of the piezoelectric strips (tp) are the most important parameters which have a significant effect on power harvested.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 July 2015

Litesh N Sulbhewar and P. Raveendranath

Piezoelectric extension mode smart beams are vital part of modern control technology and their numerical analysis is an important step in the design process. Finite elements based…

Abstract

Purpose

Piezoelectric extension mode smart beams are vital part of modern control technology and their numerical analysis is an important step in the design process. Finite elements based on First-order Shear Deformation Theory (FSDT) are widely used for their structural analysis. The performance of the conventional FSDT-based two-noded piezoelectric beam formulations with assumed independent linear field interpolations is not impressive due to shear and material locking phenomena. The purpose of this paper is to develop an efficient locking-free FSDT piezoelectric beam element, while maintaining the same number of nodal degrees of freedom.

Design/methodology/approach

The governing equations are derived using a variational formulation to establish coupled polynomial field representation for the field variables. Shape functions based on these coupled polynomials are employed here. The proposed formulation eliminates all locking effects by accommodating strain and material couplings into the field interpolation, in a variationally consistent manner.

Findings

The present formulation shows improved convergence characteristics over the conventional formulations and proves to be the most efficient way to model extension mode piezoelectric smart beams, as demonstrated by the results obtained for numerical test problems.

Originality/value

To the best of the authors’ knowledge, no such FSDT-based finite element with coupled polynomial shape function exists in the literature, which incorporates electromechanical coupling along with bending-extension and bending-shear couplings at the field interpolation level itself. The proposed formulation proves to be the fastest converging FSDT-based extension mode smart beam formulation.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 April 2023

Yucheng Shi, Deren Kong and Xuejiao Ma

The purpose of this study is to clarify the mechanism of ambient and transient temperature effects on piezoelectric pressure sensors, and to propose corresponding compensation…

Abstract

Purpose

The purpose of this study is to clarify the mechanism of ambient and transient temperature effects on piezoelectric pressure sensors, and to propose corresponding compensation measures. The temperature of the explosion field has a significant influence on the piezoelectric sensor used to measure the shock wave pressure. For accurate shock wave pressure measurement, based on the actual piezoelectric pressure sensors used in the explosion field, the effects of ambient and transient temperatures on the sensor should be studied.

Design/methodology/approach

The compensation method of the ambient temperature is discussed according to the sensor size and material. The theoretical analysis method of the transient temperature is proposed. For the transient temperature conduction problem of the sensor, the finite element simulation method of structure-temperature coupling is used to solve the temperature distribution of the sensor and the change in the contact force on the quartz crystal surface under the step and triangle temperatures. The simulation results are highly consistent with the theory.

Findings

Based on the analysis results, a transient temperature control method is proposed, in which 0.5 mm thick lubricating silicone grease is applied to the sensor diaphragm, and 0.2 mm thick fiberglass cloth is wrapped around the sensor side. Simulation experiments are carried out to verify the feasibility of the control method, and the results show that the control method effectively suppresses the output of the thermal parasitic.

Originality/value

The above thermal protection methods can effectively improve the measurement accuracy of shock wave pressure and provide technical support for the evaluation of the power of explosion damage.

Details

Sensor Review, vol. 43 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 2000

Gareth Monkman

Piezoelectric actuators are well established for use in expensive optical equipment. Within the last decade, relatively inexpensive piezoelectric actuators have become established…

Abstract

Piezoelectric actuators are well established for use in expensive optical equipment. Within the last decade, relatively inexpensive piezoelectric actuators have become established technology in pneumatic switching and the first piezoelectrically driven impactive robot grippers are just starting to emerge. Although this article concentrates largely on the use of piezoelectric actuators for use in robot gripping systems, the potential for applications outside this field is immense.

Details

Industrial Robot: An International Journal, vol. 27 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2005

Ilpo Karjalainen, Teemu Sandelin, Riku Heikkilä and Reijo Tuokko

Aims to research the possibilities of using piezoelectric technology to improve accuracy and other characteristics of parallel servo grippers.

Abstract

Purpose

Aims to research the possibilities of using piezoelectric technology to improve accuracy and other characteristics of parallel servo grippers.

Design/methodology/approach

The paper presents in detail two different kinds of developed two‐fingered servo grippers based on piezoelectric technology with parallel moving mechanics. The first gripper is based on standing wave ultrasonic motors. The other gripper is a traditional gripper, the characteristics of which have been improved with integrated piezoelectric stack actuators. Both servo grippers have been tested and the test results and experiences are introduced in the paper.

Findings

It is possible to improve the accuracy and characteristics of a parallel servo gripper with piezoelectric technology.

Research limitations/implications

In the future it is necessary to concentrate on the mechanical design of gripper bodies and the fingers. Grasping force feedback signal should be even more linear and noiseless.

Practical implications

Piezoelectric stack actuator's limited displacement is a problem in many practical applications when elastic or rough surface parts are handled. When integrated piezoelectric stacks are used with servo grippers, it is very important to focus on gripper's mechanical design and especially on the mechanical rigidity for getting the best possible results.

Originality/value

Further developed versions of these servo grippers can be used in high accuracy industry applications instead of traditional servo gripper technologies.

Details

Assembly Automation, vol. 25 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

11 – 20 of over 1000