Search results

1 – 10 of 49
Article
Publication date: 14 January 2022

Xiang Li, Keyi Wang, Yan Lin Wang and Kui Cheng Wang

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture…

Abstract

Purpose

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture plays a critical role for rehabilitation, footwear design, clinical diagnostics and sports activities, and so on. This paper aims to review plantar force measurement technologies based on piezoelectric materials, which can make the reader understand preliminary works systematically and provide convenience for researchers to further study.

Design/methodology/approach

The review introduces working principle of piezoelectric sensor, structures and hardware design of plantar force measurement systems based on piezoelectric materials. The structures of sensors in plantar force measurement systems can be divided into four kinds, including monolayered sensor, multilayered sensor, tri-axial sensor and other sensor. The previous studies about plantar force measurement system based on piezoelectric technology are reviewed in detail, and their characteristics and performances are compared.

Findings

A good deal of measurement technologies have been studied by researchers to detect and analyze the plantar force. Among these measurement technologies, taking advantage of easy fabrication and high sensitivity, piezoelectric sensor is an ideal candidate sensing element. However, the number and arrangement of the sensors will influence the characteristics and performances of plantar force measurement systems. Therefore, it is necessary to further study plantar force measurement system for better performances.

Originality/value

So far, many plantar force measurement systems have been proposed, and several reviews already introduced plantar force measurement systems in the aspect of types of pressure sensors, experimental setups for foot pressure measurement analysis and the technologies used in plantar shear stress measurements. However, this paper reviews plantar force measurement systems based on piezoelectric materials. The structures of piezoelectric sensors in the measurement systems are discussed. Hardware design applied to measurement system is summarized. Moreover, the main point of further study is presented in this paper.

Article
Publication date: 7 May 2019

Hansong Wang, Canjun Yang, Wei Yang, Meiying Deng, Zhangyi Ma and Qianxiao Wei

Most current lower extremity exoskeletons emphasize assistance for walking rather than stability. The purpose of this paper is to propose a rehabilitation gait based on the…

Abstract

Purpose

Most current lower extremity exoskeletons emphasize assistance for walking rather than stability. The purpose of this paper is to propose a rehabilitation gait based on the transfer of gravity center to improve the balance of exoskeleton rehabilitation training of the hemiplegic patients in the frontal plane, reducing the dependence on crutches/walking frames.

Design/methodology/approach

The real-time and predictable instability factors of human and exoskeleton system (HES) are analyzed. Inspired by the walking balance strategy of the blind, a rehabilitation gait based on the transfer of gravity center is proposed and studied by modeling and experimental test and is finally applied to the prototype – Zhejiang University lower extremity exoskeleton (ZJULEEX) – to verify its feasibility.

Findings

At least three real-time and predictable factors cause the instability of HES, and the factor of lateral tilt caused by gravity should be focused in the balance control of frontal plane. With the proposed gait, the hip height of stepping leg of HES does not reduce obviously even when the crutches do not work, which can improve the balance of HES.

Research limitations/implications

However, the rehabilitation gait control needs to be more complete and intelligent to response to other types of perturbations to further improve the balance of HES. In addition, more clinical trials should be conducted to evaluate the effect of the proposed gait.

Social implications

May bring happiness to the rehabilitation of patients with hemiplegia.

Originality/value

The rehabilitation gait based on the transfer of gravity center to improve the balance of HES is first proposed and applied to HES.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 September 2023

Yali Han, Shunyu Liu, Jiachen Chang, Han Sun, Shenyan Li, Haitao Gao and Zhuangzhuang Jin

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Abstract

Purpose

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Design/methodology/approach

In this paper, the valve-controlled asymmetrical hydraulic cylinder is selected for driving the hip and knee joint of exoskeleton. Pressure shoe is developed that purpose on detecting changes in plantar force, and a fuzzy recognition algorithm using plantar pressure is proposed. Dynamic model of the exoskeleton is established, and the sliding mode control is developed to implement the position tracking of exoskeleton. A series of prototype experiments including benchtop test, full assistance, partial assistance and loaded walking experiments are set up to verify the tracking performance and power-assisted effect of the proposed exoskeleton.

Findings

The control performance of PID control and sliding mode control are compared. The experimental data shows the tracking trajectories and tracking errors of sliding mode control and demonstrate its good robustness to nonlinearities. sEMG of the gastrocnemius muscle tends to be significantly weakened during assisted walking.

Originality/value

In this paper, a structure that the knee joint and hip joint driven by the valve-controlled asymmetrical cylinder is used to provide walking assistance for the wearer. The sliding mode control is proposed to deal with the nonlinearities during joint rotation and fluids. It shows great robustness and frequency adaptability through experiments under different motion frequencies and assistance modes. The design and control method of exoskeleton is a good attempt, which takes positive impacts on the productivity or quality of the life of wearers.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 May 2014

Y. Luximon, J. Yu and M. Zhang

Foot health is very important for women. Previous studies have demonstrated that the wearing of high heeled shoes could create high forefoot pressure and cause many foot problems…

Abstract

Foot health is very important for women. Previous studies have demonstrated that the wearing of high heeled shoes could create high forefoot pressure and cause many foot problems. Metatarsal pads are often used in plantar pressure relief. Therefore, the effects of several different metatarsal pads for high heeled shoes are investigated in this study. There are three tested materials, including bio-gel, polyurethane and EVA. Forefoot pressure, heel pressure, and comfort level are recorded and analyzed. The results show that the insertions of all types of metatarsal pads reduce forefoot peak pressure and increase heel peak pressure during walking. Polyurethane is the most efficient material, which relieves the forefoot peak pressure by 35.54% compared to circumstances without the padding. In addition, the subjective comfort level is significantly improved when the bio-gel pad is applied. The results from this study could be useful in the designing of metatarsal pads for high heeled shoes.

Details

Research Journal of Textile and Apparel, vol. 18 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 19 September 2016

Jianli Cui, Junping Duan, Binzhen Zhang and Xueli Nan

This paper aims to provide a fabrication and measurement of a highly stretchable pressure sensor with a “V-type” array microelectrode on a grating PDMS substrate.

Abstract

Purpose

This paper aims to provide a fabrication and measurement of a highly stretchable pressure sensor with a “V-type” array microelectrode on a grating PDMS substrate.

Design/methodology/approach

First, the “V-type” array structure on the silicon wafer was fabricated by the MEMS technology, and the fabrication process included ultra-violet lithography and silicon etching. The “V-type” array structure on the master mold was then replicated into polycarbonate, which served as an intermediate, negative mold, using a conventional nanoimprint lithography technique. The negative mold was subsequently used in the PDMS molding process to produce PDMS “V-type” array structures with the same structures as the master mold. An Ag film was coated on the PDMS “V-type” array structure surface by the magnetron sputtering process to obtain PDMS “V-type” array microelectrodes. Finally, a PDMS prepolymer was prepared using a Sylgard184 curing agent with a weight ratio of a 20:1 and applied to the cavity at the middle of the two-layer PDMS “V-type” array microelectrode template to complete hot-press bonding, and a pressure sensor was realized.

Findings

The experimental results showed that the PDMS “V-type” array microelectrode has high stretchability of 65 per cent, temperature stability of 0.0248, humidity stability of 0.000204, bending stability and cycle stability. Capacitive pressure sensors with a “V-type” array microelectrode exhibit ideal initial capacitance (111.45 pF), good pressure sensitivity of 0.1143 MPa-1 (0-0.35 Mpa), fast response and relaxation times (<200 ms), high bending stability, high temperature/humidity stability and high cycle stability.

Originality/value

The PDMS “V-type” array structure microelectrode can be used to fabricate pressure sensors and is highly flexible, crack-free and durable.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 2015

Luximon Ameersing, Ganesan Balasankar and Younus Abida

Diabetes mellitus is one of the most common diseases around the world, and mainly affects the foot among the human body parts. The main causes of the diabetic foot are neuropathy…

Abstract

Diabetes mellitus is one of the most common diseases around the world, and mainly affects the foot among the human body parts. The main causes of the diabetic foot are neuropathy, peripheral arterial disease and foot deformities; it leads to foot ulceration. Generally, sensory loss, high plantar pressure, foot deformities, inappropriate footwear, blindness, and age are the causing risk factors for developing foot ulceration in diabetic patients. Foot ulceration will result in prolonged hospitalization, high medical expenses, and serious complications with lower extremity amputation. For a long time, appropriate footwear has been recommended by physicians for reducing plantar pressure to prevent foot ulceration, the risk of amputation, and re-ulceration. A review is provided in this article towards the existing literature on the causes and prevalence of the diabetic foot, foot ulceration, off-loading pressure, footwear modification for different types of diabetic foot deformities, and types of footwear and textile materials used in footwear insoles for healing purposes.

Details

Research Journal of Textile and Apparel, vol. 19 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 August 2014

Ewa Klimiec, Jacek Piekarski, Wiesław Zaraska and Barabara Jasiewicz

This paper aims to present a prototype of the diagnostic system for the examination of the distribution of the force applied by foot to substrate during usual human moving…

Abstract

Purpose

This paper aims to present a prototype of the diagnostic system for the examination of the distribution of the force applied by foot to substrate during usual human moving. Presented system is competitive to other currently available devices, thanks to sensors reliability, user-friendly operation manner and design based on cheap parts. The results of examinations are transmitted by radiomodem. Its recording and visualization are possible on either personal or mobile computers.

Design/methodology/approach

During selection of the sensors substrate, many polymeric electrets were examined. Polyvinylidene fluoride films were selected, because they have good charge uniformity across the surface, wide range of acceptable temperatures, linear relation between mechanical stress and output signal and high resistance for squeezing. The system measures the charge generated in film.

Findings

The pressures are recorded in relation to maximum value; therefore, measuring system does not require calibration. The simultaneous recording of data from all eight sensors allows tracking the signal without distortion.

Originality/value

An array of sensors is installed in the shoe insole. The measuring device is fixed to the outer surface of the shoe. Its weight is 75 g. The range of transmission is suitable for examination in the natural environment, outside traditional consulting room. Software is dedicated for analysis of the pressure distribution in every moment of the foot movement. The system is suitable for examination of flat feet, diabetic foot and recovery progress after injures.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 August 2020

Abanah Shirley J., Esther Florence Sundarsingh, Saraswathi V., Sankareshwari S. and Sona S.

Fall detection is a primary necessity for elderly people with medically tested nervous problems. This paper aims important to detect fall and prevent fatal injuries and untreated…

Abstract

Purpose

Fall detection is a primary necessity for elderly people with medically tested nervous problems. This paper aims important to detect fall and prevent fatal injuries and untreated attention for long hours.

Design/methodology/approach

The project is focused on developing a smart shoe with force-sensitive resistors placed at plantar pressure points to detect fall. This could draw immediate medical attention to the patient. The device is developed using sensors, microcontroller and accelerometer integrated into a compact module. A rule-based detection algorithm helps in transmitting the alert to an Internet of Things device when a fall is detected.

Findings

Based on the pressure applied, there is a change in resistive value of force sensitivity resistor. When it reaches the threshold value, fall gets detected and alert gets triggered through telegram bot with latitude and longitude details of the location.

Originality/value

The challenge in developing this device is to make it wearable reducing the overall hardware complexity. The entire module placed inside the sole of the shoe avoids inconvenience to the patients.

Details

Circuit World, vol. 47 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 27 April 2023

Diego Henrique Antunes Nascimento, Fabrício Anicio Magalhães, George Schayer Sabino, Renan Alves Resende, Maria Lucia Machado Duarte and Claysson Bruno Santos Vimieiro

Currently, several studies have been published using sensorized insoles for estimating ground reaction force using plantar pressure. However, information on design parameters…

Abstract

Purpose

Currently, several studies have been published using sensorized insoles for estimating ground reaction force using plantar pressure. However, information on design parameters, manufacturing techniques and guidelines for developing insoles is scarce, often leaving gaps that do not allow reproducing the insole. This study aims to empirically investigate the main parameters of constructing a sensorized insole for application in human gait.

Design/methodology/approach

Two devices were built to evaluate the force sensors. The first focuses on the construction of the sensors with different settings: the density of the sensor’s conductive trails (thickness and distance of the trails) and the inertia of the sensors (use of spacers to prevent unwanted readings). The second device focuses on the data capture and processing system: resolution of the analog–digital converter, acquisition rate and sensor activation level.

Findings

The resolution increase of the analog–digital converter and acquisition rate do not contribute to noise increase. Reducing the sensors’ coverage area can increase sensorized insole capacity. The inertia of the sensors can be adjusted using spacers without changing the electrical circuit and acquisition system.

Originality/value

Most sensorized insoles use commercial sensors. For this reason, it is not possible a full customization. This paper maps the main variables to manufacture custom sensors and data acquisition systems. This work also presents a case study where it is possible to see the influence of the parameters in the correlation between the sensorized insole and an instrumented treadmill with a force platform.

Details

Sensor Review, vol. 43 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 July 2023

Haiyan Wang, Jiayu Fu, Li Mei, Xiangrong Xu, Shanshan Xu, Zhixiong Wang and Ri Su Na

This study aims to obtain the speed and angle during safe and comfortable standing of elderly people. With the advancement of society, it is becoming increasingly difficult for…

Abstract

Purpose

This study aims to obtain the speed and angle during safe and comfortable standing of elderly people. With the advancement of society, it is becoming increasingly difficult for the elderly to sit-to-stand (STS) independently and comfortably in a safe and comfortable manner. Safety is essentially a prerequisite for the elderly to achieve a comfortable STS. The speed, angle and power of the STS process can all affect safe STS. From the standpoint of health-care delivery and administration, comfortable STS can be realized easily by addressing the safety issues during STS.

Design/methodology/approach

This paper summarizes the research progress on speed and angle during safe and comfortable standing of older people. The authors analyzed the speed and angle of the STS using the Vicon optical gait acquisition system and plantar pressure sensor to find the appropriate angle and speed thresholds.

Findings

The center of gravity movement is a prerequisite for the elderly to achieve a comfortable STS. The authors found that the standing speed during the STS process should not be higher than 103.8 mm/s so that the elderly can stand comfortably and safely (safe and dangerous speeds are 72.8 mm/s and 125.2 mm/s). The limitations of waist angle, waist angle speed and the acceleration are also obtained.

Originality/value

This paper analyzes and summarizes the research status of speed and angle during safe and comfortable standing of elderly people, which is essentially a prerequisite for the elderly to achieve a comfortable STS. These results can lay the foundation for the development of assistive devices and related technologies that meet the needs of older adults.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 49