Search results

1 – 10 of 270
To view the access options for this content please click here
Article

K. Wang, Z.Q. Zhu, G. Ombach, M. Koch, S. Zhang and J. Xu

The purpose of this paper is to reduce the torque ripple but not to decrease the average torque of synchronous reluctance machines by using one step or more than two…

Abstract

Purpose

The purpose of this paper is to reduce the torque ripple but not to decrease the average torque of synchronous reluctance machines by using one step or more than two axially laminated rotors with asymmetric flux-barrier.

Design/methodology/approach

A 24-slot four-pole synchronous reluctance machine with overlapping windings and asymmetric flux-barrier in the rotor is, first, described and designed by finite element (FE) method for maximizing average torque. The dimensions of asymmetric flux-barrier including the pole span angle and flux-barrier angle will be optimized to minimize the torque ripple and its influence on the average torque is also investigated by FE analysis. The impact of current angle on the average torque and torque ripple are also analysed. The step laminations together with the asymmetric flux-barrier are employed for further torque ripple reduction which can consider the both rotation directions.

Findings

The torque ripple of synchronous reluctance machine can be significantly reduced by employing asymmetric flux-barrier but the average torque is not reduced.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application. The 24-slot/four-pole synchronous reluctance machine with single-layer flux-barrier has been employed in this analysis, but this work can be continued to investigate the synchronous reluctance machine with multilayer flux-barrier. This asymmetric flux-barrier can be easily applied to permanent magnet (PM)-assisted synchronous reluctance machine and the interior PM machine with flux-barrier in the rotor, since the space which is used for PM insertion is the same as the SynRM machines.

Originality/value

This paper has analysed the torque ripple and average torque of synchronous reluctance machines with asymmetric flux-barrier and step laminations with asymmetric flux-barrier. The torque ripple can be reduced by this flux-barrier arrangement. The difference of this technique with the other techniques such as stator/rotor skew is that the average torque can be improved.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Shun Cai, Meng-Jia Jin, He Hao and Jian-Xin Shen

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as…

Abstract

Purpose

The purpose of this paper is to comparatively study a synchronous reluctance machine (SynRM) and a permanent magnet assisted synchronous reluctance machine (PMASynRM) as alternatives of the interior permanent magnet synchronous machine (IPMSM), and to investigate the performance and conclude both advantages and disadvantages.

Design/methodology/approach

A unified mathematical model is established for the IPMSM, SynRM and PMASynRM. Then finite element method (FEM) is used to compare the electromagnetic performance. Permeability-frozen method is utilized to distinguish basic electromagnetic torque and reluctance torque.

Findings

The PMASynRM can improve the power factor of the SynRM, overcome the drawback of the IPMSM in the high-speed flux-weakening region and is more proper to operate over a wide speed region. The SynRM is mechanically robust for lacking of the permanent magnets, and the PMASynRM can keep similar rotor stress as the SynRM by optimizing the magnets. Assembly of the SynRM is the simplest, and the economic performance of the SynRM and PMASynRM could be much better than the IPMSM which even uses ferrite magnets.

Practical/implications

The SynRM can produce identical torque and efficiency compared with the IPMSM except the poor power factor. The poor power factor could be improved by adopting the PMASynRM, which is proved to be able to act as an alternative of the IPMSM for low-cost high-performance application.

Originality/value

This paper provides the theoretical model of the IPMSM, SynRM and PMASynRM in a unified format. The electromagnetic, mechanical and economic performances of the three kinds of synchronous motors are compared comprehensively. Then, both the advantages and disadvantages are summarized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Haiwei Cai, Bo Guan, Longya Xu and Woongchul Choi

The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth…

Abstract

Purpose

The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent magnet (PM) in electric machine for vehicle traction applications.

Design/methodology/approach

A typical rare earth interior permanent magnet (IPM) machine is used as the benchmark to conduct the optimal design study. Based on the flux distribution, major changes are made to the rotor lamination design. Enhanced torque production and lower torque ripple are specifically targeted as the two main objectives of the proposed design approach.

Findings

As a result, the optimally designed SynRM can achieve performance very close to that of the benchmark PM machine with a potential for further improvement.

Originality/value

Discussions of IPM replacement by optimally designed SynRM in electrical and hybrid electrical vehicles are given in terms of performance and cost.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Y. Guan, Z.Q. Zhu, I.A.A. Afinowi, J.C. Mipo and P. Farah

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare…

Abstract

Purpose

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their relative merits with interior permanent magnet (IPM) machine for electric vehicle applications, in terms of electromagnetic performance and material cost.

Design/methodology/approach

The analysis of electromagnetic performance is based on finite element analysis, by using software MAXWELL. The genetic algorithm is utilized for optimization.

Findings

The rotor design of SynRM can be significantly simplified by imposing some reasonable conditions. The number of rotor design parameters can be reduced to three. The electromagnetic performance of SynRM is much poorer than that of IPM, although the material cost is much cheaper, approximately one-third of IPM. The ferrite-SynRM is competitive and even better than IPM especially for high electric loading, in terms of torque capability, torque-speed characteristic, power factor, threshold speed and efficiency. In addition, ferrite-assisted SynRM has great advantage over IPM in material cost, 55 percent cheaper. The performance of NdFeB-assisted SynRM is close to IPM in terms of torque capability, torque-speed characteristic, power factor, torque ripple and efficiency. The material cost of NdFeB-assisted SynRM is ∼25 percent lower than IPM.

Originality/value

Some conditions, which can simplify the optimization of SynRM rotor, are discussed. The electromagnetic performances and material costs of SynRM, ferrite-assisted, NdFeB-assisted SynRMs and IPM are quantitatively compared and discussed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

K. Wang, Z.Q. Zhu, G. Ombach, M. Koch, S. Zhang and J. Xu

The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of…

Abstract

Purpose

The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of synchronous reluctance machine with emphasis on output torque capability and torque ripple.

Design/methodology/approach

AC synchronous reluctance machine (SynRM) or permanent magnet assisted SynRM presently receives a great deal of interest, since there is less or even no rare-earth permanent magnet in the rotor. Most of SynRM machines employ a stator that is originally designed for a standard squirrel cage induction motor for a similar output rating and application, or the SynRM machine with 24-slot, four-pole are often directly chosen for investigation in most of the available literature. Therefore, it is necessary to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of SynRM machine with emphasis on output torque capability and torque ripple.

Findings

The average torque decreases with the increase of the pole numbers but remain almost constant when employing different stator slot numbers but with the same pole number. In addition, the torque ripple decreases significantly with the increase of the stator slot number. The machine with double-layer flux-barrier in the rotor has the biggest average torque, while the machines with three- and four-layer flux-barrier in the rotor have almost the same average torque but their value is slightly smaller than that of machine with double-layer flux-barrier. However, the machine with three-layer flux-barrier has the lowest torque ripple but the highest torque ripple exists in the machine with double-layer flux-barrier.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application.

Originality/value

This paper has analyzed the torque ripple and average torque of SynRMs with considering slot/pole number combinations together with the flux-barrier number.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Marcin Lefik, Krzysztof Komeza, Ewa Napieralska-Juszczak, Daniel Roger and Piotr Andrzej Napieralski

The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor.

Abstract

Purpose

The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor.

Design/methodology/approach

To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used.

Findings

The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness.

Research limitations/implications

The main problem, despite the use of parallel calculations, is the long calculation time.

Practical implications

The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines.

Originality/value

The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Xiping Liu, Ya Li, Zhangqi Liu, Tao Ling and Zhenhua Luo

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as…

Abstract

Purpose

The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM synchronous motors used in Toyota Prius 2010.

Design/methodology/approach

A novel rotor structure with rectangular PMs is discussed with respect to the demagnetization of ferrite magnets and mechanical strength. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2D finite element analysis.

Findings

The results of the analysis show that a high power density and high efficiency for PMASynRM can be achieved using ferrite magnets.

Originality/value

This paper proposes a novel rotor structure of PMASynRM with low-cost ferrite magnets that achieves high power density as permanent machines with rare-earth PMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Damijan Miljavec, Mykhaylo Zagirnyak and Bogomir Zidarič

The purpose of this paper is to derive the geometry‐based equations for inductances which are used in circuit theory analysis of synchronous reluctance motor (SRM)…

Abstract

Purpose

The purpose of this paper is to derive the geometry‐based equations for inductances which are used in circuit theory analysis of synchronous reluctance motor (SRM). Transient and steady state performance analyze of SRM by using the 2D time‐stepping finite‐element method (FEM).

Design/methodology/approach

The analytical approach is used to obtain the equations which describe geometry dependent magnetizing inductances of SRM. Transient and steady state performance of the SRM is analyzed by using the 2D time‐stepping FEM. The external electric circuit connected with the finite‐element model of the SRM geometry allows the study of almost any of the electric and magnetic properties of the machine. Presented SRM model is also connected to the external mechanical loads (friction, rotor inertia and load torque). The use of different materials for the magnetic‐pole part of the rotor and for flux barriers was analyzed. The flux barriers in the first SRM rotor were filled with a pure massive electrically conductive ferromagnetic with a proper B‐H curve, whereas the rotor magnetic segments were made of non‐conductive electric steel described with its B‐H curve. The conductive barriers with their end rings form a squirrel cage and allow SRM to start on‐line. The flux barriers of the second SRM rotor were made of aluminum but between the second and third flux barrier a massive electrically‐conductive ferromagnetic was inserted which during starting‐up acted as a part of the squirrel cage. All of the flux barriers of the third SRM rotor were made of electrically‐conductive aluminum with iron parts axially laminated. The finite‐element SRM models coupled with an electric circuit is also used to evaluate the motor performance at various asynchronous speeds.

Findings

Analytical geometry‐dependant equations for the d‐ and q‐axis SRM inductances are derived. On the basis of the proposed 2D time‐stepping finite‐element analysis, the start‐up performance for the SRM rotor design using different materials is established. The torque distribution as a function of time at any of the observed asynchronous speeds is not smooth and uniform. It consists of the stator‐to‐rotor tooth pulsating torque, and the synchronous and asynchronous component.

Research limitations/implications

The main disadvantage of analytical geometry‐dependant equations for the d‐ and q‐axis SRM inductances is the linearization of any of the ferromagnetic parts.

Practical implications

On the basis of the proposed 2D time‐stepping finite‐element analysis, the start‐up performance, asynchronous run and synchronous torque characteristics for the SRM rotor design using different materials are established.

Originality/value

The value of the paper is the closed view about happenings in rotor flux barriers of SRM, mostly regarding the time distribution of induced currents in the rotor flux barriers. On the base of 2D time‐stepping FEM, the use of different materials for the magnetic‐pole part of the rotor and for flux barriers was analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

To view the access options for this content please click here
Article

Massimo Barcaro and Nicola Bianchi

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway…

Abstract

Purpose

The purpose of this paper is to give an overview of the design issues of permanent magnet machines for the hybrid electric and plug‐in electric vehicles, including railway traction and naval propulsion.

Design/methodology/approach

Focus is given on both synchronous permanent magnet and reluctance machines. An overview of the design rules are provided, covering the topics of: fractional‐slot windings, fault‐tolerant configurations, flux‐weakening capability, and torque quality.

Findings

The peculiarities of these machines and the advanced design considerations to fit the automotive requirements are analyzed.

Originality/value

The paper includes a wide description of innovative electrical machines for electric vehicles, including not only the traction capability, but also analysis of features as weight reduction, torque ripple reduction, increase of fault tolerance, and so on.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 270