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Abstract
Purpose – This paper aims to deal with the design optimization of a synchronous reluctance machine to be
used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material
used, bymeans of gradient-based free-form shape optimization.
Design/methodology/approach – The presented approach is based on the mathematical concept of
shape derivatives and allows to obtain new motor designs without the need to introduce a geometric
parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization
algorithm to the case of multiple objective functions by determining updates, which represent a descent of all
involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.
Findings – The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with
very low computational cost. This paper validates the results by comparing them to a parametric geometry
optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of
similar shape, the computational time used by the gradient-based algorithm is in the order of minutes,
compared to several hours taken by the stochastic optimization algorithm.
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Originality/value – This paper applies the presented gradient-based multi-objective optimization
algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives.
The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed
set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape
optimization is novel in the context of electric machines.

Keywords Electrical machine, Shape optimization, Multi-objective optimization,
Synchronous reluctance machine

Paper type Research paper

1. Introduction
In many industrial applications, the design of electric machines has to be tailored to the
application at hand because off-the-shelf solutions are not available. The design of electric
machines is usually based on engineering knowledge and is sometimes refined by geometric
optimization. Themost widely used approach is to introduce geometric parameters and optimize
these, either using stochastic optimization algorithms or derivative-based methods, see
Bramerdorfer et al. (2018) for an overview article. While derivative-based optimization
algorithms successively improve a given initial geometry by means of gradient information and
are known to converge to a local optimum rather fast, stochastic algorithms include random
effects and are less prone to getting stuck in local optima. In practice, one is usually confronted
with several conflicting objective functions, thus making multi-objective optimization
capabilities for finding a Pareto optimal set of designs important. The extension to a multi-
objective setting is more straightforward in the case of many stochastic optimization algorithms;
however, it can also be achieved in the case of derivative-basedmethods (Doganay et al., 2019).

For a thorough overview over the field of multi-objective optimization, including both
evolutionary and derivative-based algorithms, we refer the reader to the monographs (Deb,
2001; Miettinnen., 1998). The most widely used approaches of gradient-based multi-objective
optimization consist in a way to scalarize vector-valued optimization problems. For instance,
the weighted average method minimizes convex combinations of the given cost functions for a
range of different convex parameters, or the e -constraint method chooses one cost function to
be minimized and poses constraints on all other cost functions. While the former method has
the shortcoming that non-convex regions of the Pareto front cannot be recovered, this is
possible using the latter approach. For an overview over other, more sophisticated aggregation
methods, we refer the reader to Deb (2001). Besides the mentioned scalarization approaches,
there also exist methods that work directly with the vector-valued cost function and seek a
descent direction that is common to all cost functions. We mention the approach introduced in
Désidéri (2012) and the method introduced in Fliege and Svaiter (2000). Both approaches have
been extended to the case of parametric shape optimization, see Giacomini et al. (2014) and
Doganay et al. (2019) and Bolten et al. (2021), respectively. These methods are able to recover
solutions lying on non-convex regions of the Pareto front. A further important criterion for a
successful construction of a Pareto front is a method’s ability to create evenly spaced points on
the Pareto front. This is usually a difficult issue that can be addressed, e.g. by adaptive choices
of weights (Eichfelder, 2009) or a predictor-corrector scheme (Schmidt and Schulz, 2008).

In recent years, non-parametric shape optimization methods based on the mathematical
concept of shape derivatives (Delfour and Zolésio, 2011) (often referred to as free-form shape
optimization approaches) have become a more and more popular tool for the design optimization
of electric machines, see (Gangl et al., 2015; Kuci, 2018; Putek et al., 2016) for approaches using the
finite element method or the recent work (Merkel et al., 2021) in the context of isogeometric
analysis. In these approaches, the geometry is not parametrized by a finite number of scalar
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values, but the design variable is a set, e.g. the set of points occupied by ferromagnetic material in
the rotor of an electric machine. Starting out from a given initial design, the design is updated by
the action of a smooth vector field, thus allowing for any kind of design that is topologically
equivalent to the initial design. Thisway, often new and innovative designs can be obtained.

The purpose of this paper is twofold: on the one hand, we extend the gradient-based
multi-objective optimization method introduced in the case of a parametrized geometry in
Doganay et al. (2019) to the case of free-form shape optimization. This is done by replacing
the notion of gradients of functions defined on Rn by the mathematical concept of shape
derivatives of shape functions defined on a set of shapes. This allows to exploit the
flexibility of free-form shape optimization methods, as well as their fast convergence
properties also in the practically important case of multiple competing objective functions.
On the other hand, we use this method on both, the more standard single-objective case and
the case of two objective functions, to find (Pareto-)optimal designs of a synchronous
reluctance machine. Comparing our results with the results obtained by a stochastic
parameter optimization confirms the higher degree of flexibility and computational
efficiency of our approach compared to parametric design optimization.

The rest of this paper is organized as follows: in Section 2, we introduce the problem at
hand and state the mathematical model. We recall the main ingredients for a free-form shape
optimization method and apply the algorithm to our problem in Section 3. In Section 4, we
show an extension of the gradient-based free-form shape optimization algorithm to the case
of multiple objective functions before concluding in Section 5.

2. Problem description
2.1 Physical model
We consider the design optimization of a synchronous reluctance machine (SynRM), i.e. a
motor that is based solely on the reluctance principle. This motor generates torque
exclusively by a difference of reluctance between two axes, namely, the d-axis and the q-axis
(the location of the axes is defined by the number of poles of the machine). Thus, torque
generation is not based on any transient behavior or quantity and a static magnetic field
analysis is sufficient. The machine under investigation is intended for the use in an X-ray
tube for medical applications. The considered rotor will be operated in a vacuum and
therefore must be built of solid pieces of metal (as opposed to the commonly used steel sheet
structure). Additionally, the air gap of the motor is unusually large (e.g. 10mmwith an outer
stator diameter of 130mm) decreasing the torque capability of the machine. Furthermore,
the rotor has to withstand temperatures of up to 4508C (Mellak et al., 2018).

The synchronous reluctance machine is particularly suitable for such an application mainly
because of its ruggedness and construction simplicity and the absence of rotor windings (Xu
et al., 1991). As per the operation mode of the machine, quick acceleration and subsequent
braking of a tungsten disk are required. Typically, this sequence takes at maximum 10 s.
Figure 1 shows the machine under investigation. The stator is a three-phase stator with one
pole pair, the rotor consists of alternating magnetically conducting (blue) and non-conducting
layers (gray). The reference design parameters of themachine are stated in Table 1.

Figure 2 shows the simplified vector diagram of a synchronous reluctance machine. The
d-axis of the machine is the path with least reluctance, the q-axis is the path with the highest
reluctance. In the d-q axis theory, the torque is expressed as:

T ¼ 3Np

2
l dIq � l qId
� �

;
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whereNp denotes the number of pole pairs, l d and l q are the magnetic flux linkages and Id and
Iq are the currents in d-axis and q-axis direction, respectively. Alternatively, using the inductances
Ld andLq aswell as the stator current Is and current angle b , the torque is expressed as:

T ¼ 3Np

4
Ld � Lq
� �

I2ssin 2bð Þ : (1)

Evidently, as per equation (1), assuming linear lossless behavior and a fixed stator current Is, the
maximum torque can be achieved with a machine current angle b (angle between current vector
and d-axis of themachine, Figure 2) of 458 (Spargo, 2013).

2.2 Optimization goal
A static analysis is chosen to calculate the reluctance torque. Therefore, a current is impressed
on the windings according to Table 2. Subsequently, the rotor is rotated and fixed clockwise to
create the optimal current angle b of 458. The objective is to increase the torque with the given
stator at a constant current and air gap length at the optimum current angle b . The number of
conducting and non-conducting layers remains unchanged. Solely the shape of each individual
layer is subject to the optimization as to increase the d-axis inductance Ld while, ideally,
decreasing the q-axis inductance Lq at the same time.

Figure 1.
Upper half of
synchronous
reluctance machine
with a three-phase,
two-pole stator

Table 1.
Example case
machine design
parameters

Parameter Value

Stator
Inner radius 26.5 mm
Outer radius 47.5 mm
Number of slots 24
Number of phases 3
Number of poles 2
Axial length 50 mm
Winding type Single-layer distributed
No. of turns per slot 64
Phase resistance Rs.20

°
C 7.1 X

Rated voltage Ueff 230 Vac/400 Vac
Connection Star

Rotor
Outer radius 18.5 mm
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2.3 Mathematical model
We consider a two-dimensional (2D) cross-section of the machine in the setting of 2D
magnetostatics, i.e. B = curlA, where the magnetic vector potential is of the formA = (0,0,u
(x1, x2))

T. Let D � R2 denote the computational domain, which comprises the 2D cross
section of the machine as well as a surrounding air region, and let X � D denote the
ferromagnetic parts of the machine. Themathematical design optimization problem reads:

max
X2A

T uð Þ (2)

s:t: � div �X x; jrujð Þruð Þ ¼ Ji; x 2 D;

u ¼ 0; x 2 @D;
(3)

where T represents the torque for the considered rotor position,A is a set of admissible shapes,
Ji represents the impressed current density and themagnetic reluctivity is defined piecewise as:

�X x; sð Þ ¼
�̂ sð Þ x 2 X;

�0 x 2 DnX:

(

Here, �̂ is a non-linear function, which represents the magnetic reluctivity of the
ferromagnetic material, and �0 corresponds to the magnetic reluctivity of air. The partial
differential equation (PDE) constraint (3) admits a unique solution under natural
assumptions on the non-linear function �̂ (Pechstein and Jüttler, 2006). Note that the torque

Table 2.
The current values
for each winding

U-phase V-phase W-phase

12 A �6A �6A

Figure 2.
Vector diagram of a

synchronous
reluctance machine
for the simplified

model in d-q reference
frameSource: Binder (2012)
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T depends on the shape X of the ferromagnetic components via the solution to the PDE
constraint (3). Denoting the unique solution to equation (3) for givenX 2 A by uX, we define
the reduced cost function T Xð Þ :¼ T uXð Þ.

3. Free-form shape optimization
We propose a free-form shape optimization algorithm based on the mathematical concept of
shape derivatives, which is capable of improving the shape of a given initial geometry
without the need of defining geometric parameters. We will outline the main ingredients to
the method in the following. We introduce the theory for a general cost function J and will
chooseJ :¼ �T later in Section 3.3.

3.1 Shape derivative
The shape derivative of a general shape functionJ ¼ J Xð Þ represents the sensitivity ofJ when
the domain X is perturbed by the action of a given vector field V. Given a smooth vector field V,
which is defined onD, letXt = (idþtV)(X) denote the perturbed domain for t> 0, see Figure 3 for
an abstract illustration. The shape derivative ofJ in the direction given byV is defined as:

dJ X;Vð Þ :¼ lim
t&0

J Xtð Þ � J Xð Þ
t

; (4)

provided that this limit exists and the mapping dJ X;Vð Þ :¼ lim
t&0

J Xtð Þ� J Xð Þ
t ; is linear and

continuous (Delfour and Zolésio, 2011).
The shape derivative for problem (2)–(3) in the direction given by a vector field V can be

derived in an analogous way as it was done in Gangl et al. (2015).
We briefly sketch the main steps to be taken and refer the reader to Gangl et al. (2015)

and Gangl et al. (2021) for more details. The shape derivative can be computed as the
derivative of a perturbed Lagrangian with respect to the shape perturbation parameter t:

dJ X;Vð Þ ¼ @tG 0; u; pð Þ (5)

whereG : 0; t½ Þ � E � F ! R is defined as:

G t; w ; cð Þ :¼ L Xt; w � U�1t ; c � U�1t

� �
and, for our problem (2)–(3),

L Xt; w ; cð Þ :¼ �T wð Þ þ
ð
D
�Xt x; jrw jð Þrw � rc dx�

ð
D
Jic dx:

Figure 3.
Illustration of domain
perturbation by the
action of a smooth
vector field,Xt=
(idþ tV)(X)
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Here, t > 0 is a small parameter, and E and F denote the function spaces for state and
adjoint variable, respectively. Moreover, Ut(x) = x þ tV (x) denotes the shape perturbation
given by a vector fieldV, and u and p are the state and adjoint state.

For a vector field V that is only supported on the rotor, the shape derivative of problem
(2)–(3) reads (Gangl et al., 2015):

dJ X;Vð Þ ¼
ð
D
�X x; jrujð Þ divVð ÞI � @VT � @V

� �
ru � rp dx

�
ð
D

@s�X x; jrujð Þ
jruj @VTru � ruð Þ ru � rpð Þ dx:

(6)

Here, p denotes the solution to the adjoint equation, which for the case of the maximization
of the torque reads in its strong form:

�div AX uð Þrp
� �

¼ @T
@u

; x 2 D;

p ¼ 0; x 2 @D:
(7)

with

AX uð Þ :¼ �X x; jrujð ÞI þ @s�X x; jrujð Þ
jruj ru�ru:

3.2 Descent direction
Given a closed formula for the shape derivative, a descent vector field V can be obtained by
solving an auxiliary boundary value problem as follows. Let X be a Hilbert space and
b : X � X ! R a symmetric and positive definite bilinear form. Then, the solutionW [ X to
the variational problem:

b W ;Vð Þ ¼ �dJ X;Vð Þ 8V 2 X (8)

is a descent direction since it satisfies by construction:

dJ X;Wð Þ ¼ �b W ;Wð Þ < 0:

Thus, it follows from the definition in equation (4) that perturbing X a small distance into
the directionWwill yield a decrease of the cost functionJ .

The user has some degrees of freedom in the choice of the bilinear form b(·,·) as well as the

space X. Common choices include X ¼ H1 D;R2
� �

and b W ;Vð Þ ¼
ð
D
@W : @V þW � Vdx

or b W ;Vð Þ ¼
ð
D
Ce Wð Þ : e Vð Þ þW � Vdx where e Vð Þ ¼ 1

2 @V þ @V>ð Þ and C is a

fourth-order elasticity tensor. The latter choice is known to preserve mesh quality better
compared to other choices of b(·,·) (Iglesias et al., 2018). An alternative strategy for extracting
a descent direction, which also allows for the extension to multiple objective functions, will
be discussed in Section 4.2.
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3.3 Numerical results
The procedure outlined in Sections 3.1 and 3.2 constitutes the following free-form shape
optimization algorithm for minimization of shape functionJ ¼ J Xð Þ:

Algorithm 1. Given initial design X0, cost function J, tolerance
tol, k = 0.
1) Solve state equation (3) and adjoint equation (7)
2) Compute shape derivative dJ Xk;Vð Þ given in (6)
3) Compute shape gradient W as solution to (8)
4) If kWk< tol then stop

else set kWk< tol where t ¼ maxf1; 12 ; 14 ; 18 ; . . .g
such thatJ Xkþ1ð Þ < J Xkð Þ.

5) k/ kþ1 and go back to 1)

Note that the shape gradientW computed in Step 3 is a vector field that is defined on the full
rotor domain. In Step 4, the new geometry is obtained from the old geometry Xkþ1 = (id þ
tW)(Xk) = {xþ tW(x): x [Xk} by just moving every mesh node a distance t into the direction
given byW(x). Here, the parameter t is chosen by a line search to guarantee a descent of the
cost functionJ .

We applied Algorithm 1 to problems (2)–(3), i.e. we chose to minimize
J Xð Þ :¼ �T Xð Þ, using the finite element software package NGSolve (Schöberl,
2014). In particular, we used the automated shape differentiation capabilities
provided by NGSolve, which enables the automated computation of the shape
derivative dJ X;Vð Þ for a large class of PDE-constrained shape optimization
problems (Gangl et al., 2021).

For the space X in (8), we chose the space of all vector-valuedH1 functions defined on the
rotor of the machine whose normal component vanishes on the top and bottom boundary
parts of the rotor and which vanish at the left and right boundary parts. For the bilinear
form b(·,·), we chose theH1 inner product:

b V ;Wð Þ :¼
ð
Drot

@V : @W þ V �W dx;

where Drot denotes the union of the five iron and four air layers, as depicted in Figure 4. The
initial design along with the descent vector field W in the first iteration and the results
obtained after 70 iterations of Algorithm 1 are depicted in Figure 4. The torque was
increased by about 26% from 1.007 to 1.270 Nm. The computational time to obtain the
optimized designwas about 10min on a single core.

3.4 Validation
In this section, we validate the results obtained in our numerical experiments by
comparing them to an optimization run in JMAG (JSOL-Corporation, 2022). Motivated by
the results of the gradient-based optimization, see Figure 4, we parametrized our rotor
geometry by means of 13 geometric parameters under symmetry conditions, see Figure 5,
and ran a genetic algorithm, which is built into JMAG to maximize the torque. We started
with a population size of 300 and ran the algorithm for 50 generations, allowing for 60
children in each generation. The JMAGmodel used a mesh consisting of 25,109 nodes and
43,776 elements and polynomial degree 1 (compared to 14,063 nodes, 27,310 elements and
degree 1 for the NGSolve model). The computational time for evaluating one design in
JMAG is about 8 s (compared to 4 s for the coarser NGSolve model). The total
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computation time of the genetic algorithm consists of the evaluation of the single designs
as well as some additional time spent on reading/writing data and on determining the
next generation of designs.

The computational time used by the genetic algorithm was about 19 h and a total of
300þ 50 (60þ 13þ 1) = 4,000 designs were examined. The four designs with the highest
torque values are depicted in Figure 6. It can be seen that the best designs are similar to the
design we obtained by the gradient-based algorithm (Figure 4), but also that the torque
values were not quite reached. While one might be tempted to explain such a discrepancy by
the fact that different simulation tools were used, we mention that the calculated torques in
the two simulation softwares (NGSolve and JMAG) showed a good match for the initial
geometry. Thus, it seems like the design in Figure 4 is superior to those obtained by the
genetic algorithm in JMAG because more general geometries can be obtained. Of course, the

Figure 4.
Top: initial design of
rotor,T= 1.007 Nm.
Center: initial design
together with descent

vector fieldW.
Bottom: optimized

design obtained after
70 iterations of
Algorithm 1,
T= 1.270 Nm
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computation time of 19 h could be reduced by reducing the parameters of the genetic
algorithm; however, the general order of magnitude remains. Finally note that, as the choice
of the geometric parameters was inspired by Figure 4, the designs in Figure 6 would have
been unlikely to be found without the knowledge provided by the free-form shape
optimization algorithm.

4. Multi-objective shape optimization
In this section, we will consider an extension of the gradient-based free-form shape
optimization method presented in Section 3 to the setting of multiple objective functions. We

Figure 5.
Geometric
parameters used for
genetic algorithm

Figure 6.
Best results obtained
by genetic algorithm
in JMAG based on
geometric
parametrization of
Figure 5 after 300
generations

(a) (b)

(c) (d)

Notes: (a) best design, T = 1.2119Nm; (b) second best 
design, T = 1.2091Nm; (c) third best design, T = 1.2082 
Nm; (d) fourth best design, T = 1.2067 Nm
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will show how to compute a descent vector field W that assures a descent with respect to
several objective functions and will use this approach to obtain an approximation of the
Pareto front. We will apply the method to the bi-objective free-form shape optimization
problem:

min
X

J 1 Xð Þ
J 2 Xð Þ

� �

where J 1 Xð Þ :¼ �T Xð Þ corresponds to the negative of the torque related to X and
J 2 Xð Þ :¼ Vol Xð Þ denotes the volume of the ferromagnetic subdomains of the machine.

4.1 The steepest descent methods for multicriteria optimization in Rn

We briefly recall the method introduced in Fliege and Svaiter (2000) for optimization
problems in Rn before extending it to the case of multi-objective (free-form) shape
optimization. We explain the method for the case of two functions f1; f2 : R2 ! R; however,
a general number of objective functions n� 1 is possible.

The main idea of the method is the following: one chooses an initial guess (x0, y0) and in
each iteration k computes a bi-descent direction, i.e. a vector W kð Þ 2 R2 such that rf1(xk,
yk)·W

(k) < 0 and rf2(xk, yk)·W(k) < 0. Then, one chooses a small enough step size t and sets
(xkþ1, ykþ1) = (xk, yk) þ tW(k). By construction, when t is chosen small enough, one obtains a
descent of both objective functions, i.e. fi(xkþ1, ykþ1)< fi(xk, yk) for i= 1, 2.

According to Fliege and Svaiter (2000), the bi-descent directionW = (W1,W2) in iteration
k can be obtained by solving the following auxiliary optimization problem:

min
r ;W1;W2

r þ 1
2

W2
1 þW2

2

� �
subject to rf1 xk; ykð Þ �W# r ;

rf2 xk; ykð Þ �W# r :

(9)

As (r ,W1,W2) = (0,0,0) is a feasible point of (9), the solution of (9) will satisfy r # 0 and thus
rfi(xk, yk)·W# 0 for i = 1, 2. The second term in the cost function of (9) is meant to keep the
norm ofW bounded.

4.2 Multi-objective descent direction for shape derivatives
Given two shape functions J 1; J 2 and their corresponding shape derivatives dJ i X;Vð Þ,
i= 1, 2, we want to find a vector fieldW such that:

dJ 1 X;Wð Þ < 0 and dJ 2 X;Wð Þ < 0:

We extend the idea explained in Section 4.1, which has already been used in the framework
of parametric shape optimization in (Doganay et al., 2019), to the setting of free-form shape
optimization. For that purpose, we consider a finite element discretization using piecewise
linear and globally continuous finite elements on a triangular mesh. Denoting the
corresponding hat basis functions by w 1,. . ..,wn where n is the number of mesh points and
Ui= (w i,0)

T, andUnþi= (0,w i)
T, i= 1,. . .,n, we have that:

fU1; . . . ;U2ng
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is a basis for the set of all 2D vector fields on themesh. Thus, after discretization, each vector

field Wh can be written as Wh ¼
X2n

i¼1 WiUi with the coefficient vector

W :¼ W1; . . .W2nð Þ>. Note that we can identify the finite element function Wh with its
coefficient vector W . To obtain a discrete bi-descent direction Wh, we solve the auxiliary
optimization problem to find r ;Wð Þ 2 R� R2n:

min
r ;W

r þ 1
2

X2n
i¼1

W2
i ;

s:t: dJ 1 X;Whð Þ# r ;

dJ 2 X;Whð Þ# r :

(10)

Due to the linearity of the shape derivatives dJ i X;Whð Þ with respect to Wh, the solution
r ;Wð Þ ¼ 0; 0ð Þ 2 R� R2n is a feasible point of (10). Therefore, it follows that the solution
r ;Wð Þ to (10) satisfies dJ i X;Whð Þ# r # 0, i = 1, 2, thus giving a bi-descent direction Wh

whenever the optimal r is negative. Again, the second term in the cost function of (10) is meant to
keep the norm ofWh bounded. Of course, an extension of this approach to account for more than
two cost functionsJ 1; . . . ;J N is straightforward.

4.3 Obtaining a Pareto front
Proceeding as described in Section 4.2 allows to obtain a bi-descent direction Wh. Thus,
starting out from an initial design, iteratively computing a bi-descent vector field and
moving the interface a small distance in the direction given by this vector field constitutes a
gradient-based free-form shape optimization algorithm for two cost functions. When no
further decrease can be obtained, a Pareto optimal point is found.

To obtain many Pareto optimal points, one could start with many different initial designs.
However, for the case of shape optimization, it turns out to be more convenient to proceed as
follows: consider different scalings of the two objective functions, i.e. apply the gradient-based
bi-objective descent algorithm for the two objective functions J 1 and wJ 2 with different
values of the weight w (Doganay et al., 2019). Each choice of the weight w corresponds to a run
of the bi-objective descent algorithm andwill yield a point on the Pareto front.

4.4 Discussion of multi-objective optimization method
We stress that, in contrast to the widely used weighted summethod, the approach discussed
above is also feasible for finding solutions on non-convex regions of a Pareto front, as also
noted in Doganay et al. (2019). To illustrate this feature of the method, we apply it to the
simple numerical example involving the two cost functions f1; f2 : R2 ! R:

f1 x1; x2ð Þ ¼ x1

f2 x1; x2ð Þ ¼ 1þ x22 � x1 � 0:1 sin 3px1ð Þ
(11)

to be minimized. For this problem, the Pareto front is known to be non-convex [3, Section
3.1.4]. Figure 7 shows the Pareto front of the problem as well as 18 points on it which were
obtained by means of the bi-descent algorithm of Section 4.1. Here, to obtain different points
on the Pareto front, six different starting values were chosen. In addition, three different
weights of f2 were used as discussed in Section 4.3.
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While problem (11) is only academic and is not a shape optimization problem, it
illustrates that the procedure that is based on finding descent directions for both cost
functions can very well find designs on non-convex parts of the Pareto front. This is an
advantage of the method over some aggregation methods such as the well-known
weighted summethod.

4.5 Numerical results for synchronous reluctance machine
The proposed algorithm to obtain an approximation of a Pareto front consists in a loop over
different weights w where each iteration uses an algorithm similar to Algorithm 1 to obtain
an optimized design. In contrast to Algorithm 1, however, here the descent direction is
obtained by solving the auxiliary optimization problem (10) rather than an auxiliary
boundary value problem of the form (8). The algorithm reads as follows:

Algorithm 2. Given initial designX0, cost functionsJ 1;J 2,
tolerance tol, set of weights {w1,. . .,wM}.
For j = 1,. . .,M:

1) If j>M then stop
else set ~J 1  J 1; ~J 2  wjJ 2.

2) Set k 0; X jð Þ
0  X0

3) For k = 0,1,2,. . .
(i) Solve state equation (3) and adjoint equation (7)

(ii) Compute shape derivatives d ~J 1 X jð Þ
k ;V

� �
; d ~J 2 X jð Þ

k ;V
� �

(iii) Compute bi-objective descent direction Wh as solution

to (10) with d ~J 1 X jð Þ
k ; �

� �
; d ~J 2 X jð Þ

k ; �
� �

(iv) If kWkk< tol then j/ jþ1 and go to 1)

else set X jð Þ
kþ1 ¼ ðid þ tWÞ X jð Þ

k

� �
kWkk < tol where

t ¼ maxf1; 12 ; 14 ; 18 ; . . .g such thatJ i X jð Þ
kþ1

� �
< J i X jð Þ

k

� �
, i = 1, 2.

Figure 7.
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In our implementation, we solved the quadratic optimization problem involving linear
inequality constraints (10) by means of a sequential least squares programming
optimization algorithm using the functionality scipy.optimize(. . .). To reduce
computation time, we restricted problem (10) to the degrees of freedom on the material
interfaces that are subject to optimization and neglected the interior degrees of freedom.
This is motivated by the fact that a movement of points inside a subdomain does not alter
the shape. Proceeding like this, we obtain a deformation vector field that is only
supported on the material interfaces and vanishes on all interior mesh nodes. To avoid
intersection of the mesh when updating the geometry, we extend the vector field from the
interfaces to the whole rotor domain by harmonic extension, i.e. by solving an elliptic
PDE. As additional constraints, we imposed the linear equality constraints that the
normal component of the vector field on the boundary on the rotor domain vanishes, i.e.
Wx(z)nx(z)þWy(z)ny(z) = 0 for all mesh points z [ @Drot. These constraints ensure that the
radius of the rotor remains unchanged.

Figure 8 (left) shows the results of the bi-objective descent algorithm for minimizing the
negative torque and w times the volume, J 1 Xð Þ ¼ �T Xð Þ and wJ 2 Xð Þ ¼ wVol Xð Þ, for
different choices of the weighting factor w. The right picture of Figure 8 depicts a zoom on
the obtained Pareto optimal points. The computational effort for obtaining one Pareto
optimal design is comparable to the cost of one single-objective optimization run (Section
3.3), amounting to a computational time of about 2 h on a single core to obtain the depicted
Pareto front. The Pareto optimal designs corresponding to three different choices of w can be
seen in Figure 9. The Pareto front appears to be convex in this problem. However, as
discussed in Section 4.4, this is not a necessary requirement for the bi-descent algorithm to
deliver satisfactory results.

Figure 8.
Left: Values of
different designs
obtained in the course
of gradient based two-
objective optimization
algorithm for different
weightsw. Right:
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5. Conclusion and outlook
We addressed the problem of finding the optimal shape of the rotor of a synchronous
reluctance machine as used in an X-ray tube by means of a gradient-based free-form shape
optimization method, which is based on the shape derivative. This approach allowed to
obtain an optimized shape, which exhibits an increase of the torque by 26% within only
several minutes of computation time. The results are confirmed by a geometric parameter
optimization in JMAG where the parametrization is motivated by the design obtained by
free-form optimization. Moreover, we introduced an extension to the setting of multi-
objective shape optimization and showed a way to obtain an approximate Pareto front while
significantly decreasing the computation time when compared to evolutionary algorithms.
While we applied the methods to a specific motor design featuring a large air gap, the shape
optimization approaches are universal and can easily be applied to more common rotor
geometries, see (Merkel et al., 2021) for an application to a permanent magnet-assisted
synchronousmachine.

One aspect to further improve the proposed method is the incorporation of a
mechanism to create evenly spaced solutions on the Pareto front. Here, on the one
hand, adaptive choices of the initial designs or weighting parameters discussed
(Section 4.3) in the spirit of Eichfelder (2009) seems promising, or, on the other hand, a
predictor-corrector scheme as used in Schmidt and Schulz (2008). However, the
extension of these approaches to the case of free-form shape optimization requires a
more detailed analysis and is subject to future work. Moreover, in this paper, we only
considered shape optimization approaches that cannot alter the connectivity of the
initial design. A next step would be to consider topology optimization methods to
additionally allow for changing topologies, in particular in the context of multi-
objective optimization. While this was beyond the scope of this paper, also this is
subject of future work.
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