Search results

1 – 10 of over 1000
Article
Publication date: 31 October 2022

Hanqiao Che and Tang Chen

The objective of this study is to investigate several issues related to particle circulation within the TFB, including exploring an appropriate method to quantify particle

Abstract

Purpose

The objective of this study is to investigate several issues related to particle circulation within the TFB, including exploring an appropriate method to quantify particle circulation time, the effects of different operational parameters on particle circulation time, and the relationship between particle mixing and particle circulation.

Design/methodology/approach

The computational fluid dynamics coupled with the discrete element method (CFD-DEM) is applied to investigate the particle circulation characteristics of a tapered fluidized bed (TFB). An approach for defining particle circulation, which accounts for the horizontal motion of each particle, is proposed to estimate particle circulation time.

Findings

It is found that the overall particle circulation in a TFB could be accelerated by increasing air velocity and wall inclination angle, while an increase in particle size and an increase in inter-particle cohesive forces decelerate particle circulation; the increase in the open area ratio of the central region of the air distributor would decelerate the particle circulation. Moreover, the particle circulation time and mixing rate are independent variables that describe the flow dynamics of particles from different perspectives.

Practical implications

A large part of fluidized beds in industrial applications can be classified as TFB. This study presents a numerical method to obtain detailed knowledge about particle circulation in a TFB, which is essential for the design, optimization, and control of related processes.

Originality/value

The particle circulation in a TFB is important but rarely investigated, and it is hard to be quantified using existing experimental approaches. The proposed numerical workflow reveals the characteristics of particle circulation from a particle-scale perspective.

Details

Engineering Computations, vol. 39 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 2005

C.J. Ho, S.Y. Chiu and J.F. Lin

To examine the heat transfer characteristics of soild‐liquid phase change material (PCM) suspensions in a rectangular natural circulation loop.

Abstract

Purpose

To examine the heat transfer characteristics of soild‐liquid phase change material (PCM) suspensions in a rectangular natural circulation loop.

Design/methodology/approach

A continuum mixture flow model is used for the buoyancy‐driven circulation flow of the PCM suspensions together with an approximate enthalpy model to describe the solid‐liquid phase change (melting/freezing) process of the PC particles in the loop. Numerical simulations via a finite difference method have been conducted for the pertinent physical parameters of a loop with fixed geometrical configuration in the following ranges: the modified Rayleigh number Ra*=109‐1013, the modified Stefan number Ste*=0.05‐0.5, the particle volumetric fraction Cv=0‐20 percent and the modified subcooling factor Sb*=0‐2.0.

Findings

The melting/freezing processes of the PCM particles at the heated/cooled sections of the loop are closely interrelated in their inlet conditions of the suspension. The influences of the modified Rayleigh number, the particle fraction, the modified Stefan number, and the modified subcooling factor on the heat transfer behavior, as well as the thermal efficacy of the PCM suspensions are elucidated. There could be a flow regime in the parametirc domain where heat transfer performance of the suspension circulation loop is significantly enhanced, due to contribution of the latent heat transport associated with melting/freezing of PCM particles.

Research limitations/implications

Future work to address effects of the geometric parameters such as the aspect ratio; the lengths and locations of, as well as the relative height between the heated and cooled sections is definitely needed, which are necessary steps towards developing more reliable predictive tools for system design of a circulation loop containing PCM suspension.

Originality/value

This work has explored the feasibility and quantified the efficacy of incorporating the PC suspensions as the heat transfer enhancement medium in a natural circulation loop, which has not been examined previously.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2015

Yuanqiang Tan, Rong Deng, Y T Feng, Hao Zhang and Shengqiang Jiang

The purpose of this paper is to establish a new two-phase Discrete Element Method (DEM) model to investigate the movement of fresh concrete which consists of mortar and aggregate…

Abstract

Purpose

The purpose of this paper is to establish a new two-phase Discrete Element Method (DEM) model to investigate the movement of fresh concrete which consists of mortar and aggregate. The established DEM model was adopted to simulate the mixing process of fresh concrete based on the commercial software package PFC3D. The trajectories of particles and particle clusters were recorded to analyze the mixing behavior from different scales. On one hand, the macro-scale movement was obtained to make the mixing process visualization. On the other hand, the relative micro movement of the single particle and particle clusters was also monitored to further study the mixing mechanism of the fresh concrete.

Design/methodology/approach

A new two-phase DEM model was designed to simulate the movement of fresh concrete which consists of mortar and aggregate. The linear-spring dashpot model was used to model all the contacts between particle and particle/wall to characterize the viscidity of fresh concrete. Moreover, two sets of parallel bond models were employed to characterize the contact between the mortar particles and mortar/coarse aggregate particles, namely the pbond1 and pbond2. The hybrid treatment enables the current DEM model to handle the yield behavior.

Findings

The mixing process of fresh concrete is mainly composed by the transportation in the x-direction and the overturn and fall off in the y- and z-directions. With these movements in different directions, the concrete particles can be fully mixed in the mixing drum.

Originality/value

A new two-phase DEM model was proposed and used to simulate the mixing process of fresh concrete. The outcomes of the simulation would be helpful for making the transporting truck visualization and the movement behavior of fresh concrete observable. The model can provide dynamic information of particles to reveal the interaction mechanism of fresh concrete in the truck mixer which is extremely difficult to obtain on-line in physical experiments or building site.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 December 2019

Samaneh Karami, Ataallah Soltani Goharrizi, Bahador Abolpour and Samira Darijani

The purpose of this paper is to present a computational fluid dynamic simulation for the investigation of the particles segregation phenomenon in the gas–solid fluidized beds.

110

Abstract

Purpose

The purpose of this paper is to present a computational fluid dynamic simulation for the investigation of the particles segregation phenomenon in the gas–solid fluidized beds.

Design/methodology/approach

These particles have the same size and different densities. The kε model and multiphase particle-in-cell method have been utilized for modeling the turbulent fluid flow and solid particles behaviors, respectively. The coupled equations of the velocity and pressure have been solved by using a combination of SIMPLE and PISO algorithms. After validating the simulation, different mixing indices, with different calculation bases, have been investigated, and it has been found that the Lacey mixing index, which was defined based on statistical concepts, is suitable to investigate the segregation/mixing phenomena of this bed in different conditions. Finally, the effects of parameters such as velocity, particle density ratio, jetsam concentration, and initial arrangement on the segregation/mixing behaviors of the bed have been studied.

Findings

The results show that the increase in the superficial gas velocity decreases the mixing index to a minimum value and then increases this index in the beds with mixed initial condition, unlike the beds with separated initial condition. Moreover, an increase in the particle density ratio increases the minimum fluidization velocity of the bed, and also the amount of segregation, and increase in the jetsam concentration increases the value of the mixing index.

Originality/value

A computational fluid dynamics simulation has been presented for the particles segregation phenomenon in the gas–solid fluidized beds.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 May 2017

Ray O. Prather, Alain Kassab, Marcus William Ni, Eduardo Divo, Ricardo Argueta-Morales and William M. DeCampli

Predictive models implemented in medical procedures can potentially bring great benefit to patients and represent a step forward in targeted treatments based on a patient’s…

Abstract

Purpose

Predictive models implemented in medical procedures can potentially bring great benefit to patients and represent a step forward in targeted treatments based on a patient’s physiological condition. It is the purpose of this paper to outline such a model.

Design/methodology/approach

A multi-scale 0D-3D model based on patient specific geometry combines a 0-dimensional lumped parameter model (LPM) with a 3D computational fluid dynamics (CFD) analysis coupled in time, to obtain physiologically viable flow parameters.

Findings

A comparison of physiological data gathered from literature with flow-field measurements in this model shows the viability of this method in relation to potential predictions of pathological flows repercussions and candidate treatments.

Research limitations/implications

A limitation of the model is the absence of compliance in the walls in the CFD fluid domain; however, compliance of the peripheral vasculature is accounted for by the LPM. Currently, an attempt is in progress to extend this multi-scale model to account for the fluid-structure interaction of the ventricular assist device vasculature and hemodynamics.

Originality/value

This work reports on a predictive pulsatile flow model that can be used to investigate surgical alternatives to reduce strokes in LVADs.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 September 2019

Cesar Martin Venier, Andrés Reyes Urrutia, Juan Pablo Capossio, Jan Baeyens and Germán Mazza

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB…

Abstract

Purpose

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles.

Design/methodology/approach

For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups.

Findings

The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities.

Originality/value

A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2019

Sami Ernez and François Morency

The aim of this paper is to present a Eulerian–Lagrangian model of aircraft ground deicing that avoids the scale’s dispersion problem caused by the great distance between the…

Abstract

Purpose

The aim of this paper is to present a Eulerian–Lagrangian model of aircraft ground deicing that avoids the scale’s dispersion problem caused by the great distance between the spray nozzle and the surface to be deiced. Verification is done using the case of a hot particle liquid spray impinging on a horizontal flat plate. The impinged particles flow outwards radially from the impingement zone and form a hot film wall. The computed wall heat distribution is verified. In the end, an inclination spray’s angle study is presented.

Design/methodology/approach

The problem is divided into two regions. First, a 3D region is created for the evolution of the Lagrangian particles spray. A second 2D region is provided for the formation of a liquid film. The two regions exchange mass, momentum and energy through an interface. Heat losses are modelled through particles and liquid-film cooling and evaporation, particles splash and heat transfer to a fixed temperature plate.

Findings

For a chamber pressure of 1 bar, the predicted spray penetration is within 10 per cent of the experimental results. For this study case, the heat transfer is maximized with an inclination angle of approximately 30° of the spray.

Originality/value

The model presented makes it possible to simulate the impingement and heat transfer of a large-scale liquid spray with a reasonable computational cost. To the best of the authors’ knowledge, this model is a first attempt of the computational fluid dynamics simulation of ground deicing.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Mohammed Ahmed Al-Bukhaiti, Ahmed Abouel Kasem Mohamad, Karam Mosa Emara and Shemy M. Ahmed

This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In…

Abstract

Purpose

This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In this study, the slurry erosion mechanism with particle concentration has been studied.

Design/methodology/approach

The tests were carried out with particle concentrations in the range of 1-7 Wt.%, and the impact velocity of slurry stream was 15 m/s. Silica sand with a nominal size range of 500-710 µm was used as an erodent. The study revealed that the failure mode was independent of concentration.

Findings

The results showed that the erosion rate decreases with the increase in particle concentration and the variation in the reduction depends on the material. It was found that the variation of fractal dimension calculated from slope of linearized power spectral density of eroded surface image for different concentrations can be used to characterize the slurry erosion intensity in a similar manner to the erosion rate. It was also found that the variation of fractal dimension versus concentration of sand has a general trend that does not depend on magnification factor.

Originality/value

Using the gravitational measurement and image analysis, the variation of the wear with slurry concentration has been analyzed to investigate the implicated mechanisms of erosion during the process.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Article
Publication date: 1 October 2000

1120

Abstract

Details

Pigment & Resin Technology, vol. 29 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 November 2019

Samuel Ayofemi Olalekan Adeyeye

Nanotechnology as an emerging area if adequately harnessed could revolutionise food packaging and food processing industry worldwide. Although several benefits of nano-materials…

1552

Abstract

Purpose

Nanotechnology as an emerging area if adequately harnessed could revolutionise food packaging and food processing industry worldwide. Although several benefits of nano-materials or particles in food packaging have been suggested, potential risks and health hazards of nano-materials or particles are possible as a result of migration of their particles into food materials. The purpose of this review therefore assessed nanotechnology and its applications in food packaging, consumer acceptability of nano-packaged foods and potential hazards and safety issues in nano-packaged foods.

Design/methodology/approach

This review takes a critical assessment of previous literature on nanotechnology and its impact on food packaging, consumer health and safety.

Findings

Applications of nanotechnology in food packaging could be divided into three main divisions: improved packaging, which involves mixing nano-materials into polymers matrix to improve temperature, humidity and gas barrier resistance of the packaging materials. Active packaging deals with direct interaction between nano-materials used for packaging and the food to protect it as anti-microbial or oxygen or ultra violet scavengers. Smart packaging could be used to sense biochemical or microbial changes in foods, as well as a tracker for food safety, to prevent food counterfeit and adulteration. The review also discussed bio-based food packaging which is biodegradable. Bio-based packaging could serve as veritable alternative to conventional packaging which is non-degradable plastic polymers which are not environmental friendly and could pose a threat to the environment. However, bio-based packaging could reduce material waste, elongate shelf life and enhance food quality. However, several challenges are envisaged in the use of nano-materials in food packaging due to knowledge gaps, possible interaction with food products and possible health risks that could result from the nano-materials used for food packaging.

Originality/value

The increase in growth and utilisation of nanotechnology signifies wide use of nano-materials especially in the food sector with arrays of potential benefits in the areas of food safety and quality, micronutrients and bioactive ingredients delivery, food processing and in packaging Active studies are being carried out to develop innovative packages such as smart, intelligent and active food packaging to enhance effective and efficient packaging, as well as balanced environmental issues. This review looks at the future of nano-packaged foods vis-à-vis the roles played by stakeholders such as governments, regulatory agencies and manufacturers in looking into consumer health and safety issues related to the application of nano-materials in food packaging.

Details

Nutrition & Food Science , vol. 49 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 10 of over 1000