Search results

1 – 10 of over 5000
Article
Publication date: 8 May 2018

Mohammed Ahmed Al-Bukhaiti, Ahmed Abouel Kasem Mohamad, Karam Mosa Emara and Shemy M. Ahmed

This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In…

Abstract

Purpose

This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In this study, the slurry erosion mechanism with particle concentration has been studied.

Design/methodology/approach

The tests were carried out with particle concentrations in the range of 1-7 Wt.%, and the impact velocity of slurry stream was 15 m/s. Silica sand with a nominal size range of 500-710 µm was used as an erodent. The study revealed that the failure mode was independent of concentration.

Findings

The results showed that the erosion rate decreases with the increase in particle concentration and the variation in the reduction depends on the material. It was found that the variation of fractal dimension calculated from slope of linearized power spectral density of eroded surface image for different concentrations can be used to characterize the slurry erosion intensity in a similar manner to the erosion rate. It was also found that the variation of fractal dimension versus concentration of sand has a general trend that does not depend on magnification factor.

Originality/value

Using the gravitational measurement and image analysis, the variation of the wear with slurry concentration has been analyzed to investigate the implicated mechanisms of erosion during the process.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 June 2010

Yulan Sun, Marc Thomas and Jacques Masounave

The purpose of this paper is to present experimental research on the behaviour of a new electrorheological fluid (ETSERF).

1986

Abstract

Purpose

The purpose of this paper is to present experimental research on the behaviour of a new electrorheological fluid (ETSERF).

Design/methodology/approach

The ETSERF is a suspension based on diatomite powders dispersed in silicon oil with a surfactant. A design of experiments is conducted to investigate the effects of electric field strength, particle concentration, surfactant percentage, particle size and shear rate on the efficiency of ETSERFs. The influence of the interactions on shear stresses is analyzed by varying all the combinations of the independent variables. The dielectric properties of the ETSERF are investigated in order to explain the interactions between these independent variables. Furthermore, a quantitative relationship between the dynamic shear stresses and the independent variables is developed.

Findings

The relationship provides a very useful explanation for the contributions of each independent variable to the viscosity and yield stress.

Originality/value

A new empirical model is proposed to explain the rheological behaviour of the ER fluids with a shear‐thinning behaviour.

Details

Multidiscipline Modeling in Materials and Structures, vol. 6 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 March 2013

Awad B.S. Alquaity, Salem A. Al‐Dini and Bekir S. Yilbas

Heat capacity enhancement is important for variety of applications, including microchannel cooling and solar thermal energy conversion. A promising method to enhance heat capacity…

Abstract

Purpose

Heat capacity enhancement is important for variety of applications, including microchannel cooling and solar thermal energy conversion. A promising method to enhance heat capacity of a fluid is by introducing phase change particles in a flow system. The purpose of this paper is to investigate heat capacity enhancement in a microchannel flow with the presence of phase change material (PCM) particles.

Design/methodology/approach

Discrete phase model (DPM) and homogeneous model have been compared in this study. Water is used as the carrier fluid and lauric acid as the PCM particles with different volume concentrations, ranging from 0 to 10%. Both the models neglect the particleparticle interaction effects of PCM particles.

Findings

The DPM indicates that presence of 10% volume concentration of PCM particles does not cause an increase in the pressure drop along the channel length. However, prediction from the homogeneous model shows an increase in the pressure drop due to the addition of nanoparticles in such a way that 10% volume concentration of particles causes 34.4% increase in pressure drop.

Research limitations/implications

The study covers only 10% volume concentration of PCM particles; however, the model may be modified to include higher volume concentrations. The laminar flow is considered; it may be extended to study the turbulence effects.

Practical implications

This work provides a starting framework for the practical use of different PCM particles, carrier fluid properties, and different particle volume concentrations in electronic cooling applications.

Originality/value

The work presented is original and the findings will be very useful for researchers and engineers working in microchannel flow in cooling and thermal storage applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1995

Omar Ali Sabbak

Presents the measured concentrations of iron, zinc, cobalt,chromium, nickel, lead, manganese and sodium in atmospheric inhalablecoarse and fine particles for the period September…

Abstract

Presents the measured concentrations of iron, zinc, cobalt, chromium, nickel, lead, manganese and sodium in atmospheric inhalable coarse and fine particles for the period September 1984‐April 1986 in Jedda, Saudi Arabia. The results show that iron and sodium have the highest concentrations, indicating that inhalable particles are of soil and sea origin. The metal concentrations of fine inhalable particles are much smaller than those of coarse inhalable particles, so that human health is hardly affected.

Details

Environmental Management and Health, vol. 6 no. 5
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 1 January 2012

Andrei Bologa, Hanns‐Rudolf Paur, Helmut Seifert, Klaus Woletz and Tobias Ulbricht

The aim of the paper is to present the results of investigations of fine particle generation by small biomass combustion and the possibility of reducing the emissions by…

Abstract

Purpose

The aim of the paper is to present the results of investigations of fine particle generation by small biomass combustion and the possibility of reducing the emissions by electrostatic precipitation.

Design/methodology/approach

The grains, wood‐logs, wood‐, mixed‐ and straw‐pellets were combusted in two stoves and two boilers. The set‐ups were operated according to DIN‐4702. Particle number concentration in the gas flow was measured by Scanning Mobility Particle Sizer and particle mass concentration was measured according to the Guidelines VDI‐2066 upstream and downstream a novel space charge electrostatic precipitator (ESP). The ESP consists of an ioniser and a grounded brush inside of a tube form grounded collector electrode.

Findings

The ESP ensures stable operation at gas temperatures up to 350°C. The use of sharp‐points high voltage electrode ensures effective particle charging at high particle number concentrations. The combustion of wood‐pellets is characterized by lower particle mass concentrations. The highest particle mass concentrations were observed by the straw‐pellets combustion. The ESP ensures particle collection with mass collection efficiency 87±3% for wood‐logs and 82±2% for wood‐pellets combustion.

Practical implications

The novel ESP is recommended for exhaust gas cleaning from small scale biomass combustion facilities and domestic heating units. The use of the ESP would reduce the emissions of fine aerosol into the atmosphere and improve the air quality.

Originality/value

The paper presents the comparative analysis of particle size distribution and particle mass concentrations in the exhaust gas from small‐scale combustion units for different types of biomass. The study confirms the possibility to reduce particle emissions by electrostatic precipitation. The originality of the technology and apparatus is patently protected.

Details

Management of Environmental Quality: An International Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 June 2021

Shirun Ding and Bing Feng Ng

This study aims to examine on-site particle concentration levels due to emissions from a wide spectrum of additive manufacturing techniques, including polymer-based material…

Abstract

Purpose

This study aims to examine on-site particle concentration levels due to emissions from a wide spectrum of additive manufacturing techniques, including polymer-based material extrusion, metal and polymer-based powder bed fusion, directed energy deposition and ink-based material jetting.

Design/methodology/approach

Particle concentrations in the operating environments of users were measured using a combination of particle sizers including the TSI 3910 Nano SMPS (10–420 nm) and the TSI 3330 optical particle sizer (0.3–10 µm). Also, fumes from a MEX printer during printing were directly captured using laser imaging method.

Findings

The number and mass concentration of submicron particles emitted from a desktop open-type MEX printer for acrylonitrile-butadiene-styrene and polyvinyl alcohol approached and significantly exceeded the nanoparticle reference limits, respectively. Through laser imaging, fumes were observed to originate from the printer nozzle and from newly deposited layers of the desktop MEX printer. On the other hand, caution should be taken in the pre-processing of metal and polymer powder. Specifically, one to ten micrometers of particles were observed during the sieving, loading and cleaning of powder, with transient mass concentrations ranging between 150 and 9,000 µg/m3 that significantly exceeded the threshold level suggested for indoor air quality.

Originality/value

Preliminary investigation into possible exposures to particle emissions from different 3D printing processes was done, which is useful for the sustainable development of the 3D printing industry. In addition, automatic processes that enable “closed powder cycle” or “powder free handling” should be adopted to prevent users from unnecessary particle exposure.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 October 2019

Kanwar Pal Singh, Arvind Kumar and Deo Raj Kaushal

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as…

Abstract

Purpose

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as well as its hydraulic flow behavior. In spite of several contributions by the previous researchers, there is still a need to enrich the current understanding of hydraulic conveying through pipeline at various flow parameters. The pilot plant loop tests, particularly at high concentrations, are tedious, time-consuming and complex in nature. Therefore, in the current research the prediction methodology for slurry pipeline design based on rheological model of the slurry is used for calculation of pressure drop and other design parameters.

Design/methodology/approach

It has been established that slurry rheology plays important role in the prediction of pressure drop for laminar and turbulent flow of commercial slurries through pipeline. In the current research fly ash slurry at high concentration is chosen for rheological analysis. The effect of particle size and solid concentration is experimentally tested over the rheological behavior of slurry and based on the rheological data a correlation is developed for calculation of pressure drop in slurry pipeline.

Findings

The present study strongly supports the analytical approach of pressure drop prediction based on the rheological parameters obtained from the bench scale tests. The rheological properties are strongly influenced by particle size distribution (PSD), shear rate and solid mass concentration of the slurry samples. Pressure drop along the pipeline is highly influenced by flow velocity and solid concentration. The presence of coarser particles in the slurry samples also leads to high pressure drop along the pipeline. As the concentration of solid increase the shear stress and shear viscosity increase cause higher pressure drop.

Research limitations/implications

The transportation of slurry in the pipeline is very complex as there are lot of factors that affect the flow behavior of slurry in pipelines. From the vast study of literature it is found that flow behavior of slurry changes with the change in parameters such as solids concentration, flow velocity, PSD, chemical additives and so on. Therefore, the accurate prediction of hydraulic parameter is very difficult. Different slurry samples behave differently depending upon their physical and rheological characteristics. So it is required to study each slurry samples individually that is time-consuming and costly.

Practical implications

Nowadays in the world, long distance slurry pipelines are used for the transportation of highly concentration slurries. Many researchers have carried out an experiment in the design aspects of hydraulic transportation system. Rheological characteristics of slurry also play crucial role in determining important parameters of hydraulic conveying such as head loss in commercial slurry pipeline. The current research is useful for the prediction of pressure drop based on rheological behavior of fly ash slurry at various solid concentrations. The current research is helpful for finding the effect of solid concentration and flow velocity on the flow behavior of slurry.

Social implications

Slurry pipeline transportation has advantages over rail and road transportation because of low energy consumption, economical, less maintenance and eco-friendly nature. Presently majority of the thermal power plants in India and other parts of the world dispose of coal ash at low concentration (20 per cent by weight) to ash ponds using the slurry pipeline. Transporting solids in slurry pipelines at higher concentrations will require a thorough knowledge of pressure drop. In the current research a rheological model is proposed for prediction of pressure drop in the slurry pipeline, which is useful for optimization of flow parameters.

Originality/value

All the experimental work is done on fly ash slurry samples collect from the Jharli thermal power plant from Haryana State of India. Bench scale tests are performed in the water resource laboratory of IIT Delhi for physical and rheological analysis of slurry. It has been shown in the results that up to solid concentration of 50 per cent by mass all the samples behave as non-Newtonian and follows a Herschel–Bulkley model with shear thickening behavior. In the present research all the result outcomes are unique and original and does not copied from anywhere.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 December 2021

Recep Demirsöz, Mehmet Erdi Korkmaz, Munish Kumar Gupta, Alberto Garcia Collado and Grzegorz M. Krolczyk

The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as…

Abstract

Purpose

The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms.

Design/methodology/approach

In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°.

Findings

With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms.

Originality/value

The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2008

Richard D. Sudduth

This study aims to introduce a new theoretical approach to blend spherical and non‐spherical particles in a coating to improve its viscosity characteristics.

Abstract

Purpose

This study aims to introduce a new theoretical approach to blend spherical and non‐spherical particles in a coating to improve its viscosity characteristics.

Design/methodology/approach

Theoretical analysis has been used to modify an existing model developed by this author to apply to a broad range of particle configurations.

Findings

Non‐spherical particles like fibres or discs in a suspension or coating have been found to have three different viscosity response regions. Consequently, the viscosity of suspensions or coatings with these types of particles appears to have two apparent maximums as a function of concentration. Improved viscosity control of coatings have been found to be directly achievable by blending particles with different shapes based on the concentration relative to this first maximum. This optimisation process has been found to be better understood using a new variable which has been described as the “sphericity”, s. The “sphericity”, s, as described in this study has been defined as the relative ratio of the surface to volume fraction for a non‐spherical particle to that of a sphere of equivalent volume.

Research limitations/implications

Experimental data involving monodisperse particles of different configurations is often extremely difficult to obtain. However, the theoretical general concepts can still be applicable.

Practical implications

The model presented in this paper provides practical guidelines to blending pigments with different particle shapes to control the viscosity of coatings and suspensions.

Originality/value

The model presented in this paper provides the first apparent guidelines to control the blending of pigments in coatings and composites with different particle shapes using the “sphericity” of the pigment particle.

Details

Pigment & Resin Technology, vol. 37 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2023

Erik Velasco and Elvagris Segovia

Waiting for a bus may represent a period of intense exposure to traffic particles in hot and noisy conditions in the street. To lessen the particle load and tackle heat in bus…

Abstract

Purpose

Waiting for a bus may represent a period of intense exposure to traffic particles in hot and noisy conditions in the street. To lessen the particle load and tackle heat in bus stops a shelter was equipped with an electrostatic precipitator and a three-step adiabatic cooling system capable of dynamically adjust its operation according to actual conditions. This study evaluates the effectiveness of the Airbitat Oasis Smart Bus Stop, as the shelter was called, to provide clean and cool air.

Design/methodology/approach

The particle exposure experienced in this innovative shelter was contrasted with that in a conventional shelter located right next to it. Mass concentrations of fine particles and black carbon, and particle number concentration (as a proxy of ultrafine particles) were simultaneously measured in both shelters. Air temperature, relative humidity and noise level were also measured.

Findings

The new shelter did not perform as expected. It only slightly reduced the abundance of fine particles (−6.5%), but not of ultrafine particles and black carbon. Similarly, it reduced air temperature (−1 °C), but increased relative humidity (3%). Its operation did not generate additional noise.

Practical implications

The shelter's poor performance was presumably due to design flaws induced by a lack of knowledge on traffic particles and fluid dynamics in urban environments. This is an example where harnessing technology without understanding the problem to solve does not work.

Originality/value

It is uncommon to come across case studies like this one in which the performance and effectiveness of urban infrastructure can be assessed under real-life service settings.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 5000