Search results

1 – 10 of 28
Article
Publication date: 25 September 2019

Cesar Martin Venier, Andrés Reyes Urrutia, Juan Pablo Capossio, Jan Baeyens and Germán Mazza

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB…

Abstract

Purpose

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles.

Design/methodology/approach

For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups.

Findings

The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities.

Originality/value

A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2013

Sergio Rodolfo Idelsohn, Norberto Marcelo Nigro, Juan Marcelo Gimenez, Riccardo Rossi and Julio Marcelo Marti

The purpose of this paper is to highlight the possibilities of a novel Lagrangian formulation in dealing with the solution of the incompressible Navier‐Stokes equations with very…

2430

Abstract

Purpose

The purpose of this paper is to highlight the possibilities of a novel Lagrangian formulation in dealing with the solution of the incompressible Navier‐Stokes equations with very large time steps.

Design/methodology/approach

The design of the paper is based on introducing the origin of this novel numerical method, originally inspired on the Particle Finite Element Method (PFEM), summarizing the previously published theory in its moving mesh version. Afterwards its extension to fixed mesh version is introduced, showing some details about the implementation.

Findings

The authors have found that even though this method was originally designed to deal with heterogeneous or free‐surface flows, it can be competitive with Eulerian alternatives, even in their range of optimal application in terms of accuracy, with an interesting robustness allowing to use large time steps in a stable way.

Originality/value

With this objective in mind, the authors have chosen a number of benchmark examples and have proved that the proposed algorithm provides results which compare favourably, both in terms of solution time and accuracy achieved, with alternative approaches, implemented in in‐house and commercial codes.

Article
Publication date: 16 September 2021

Sílvio Aparecido Verdério Júnior, Vicente Luiz Scalon and Santiago del Rio Oliveira

The purpose of this study is to analyze the influence of the main physical–numerical parameters in the computational evaluation of natural convection heat transfer rates in…

Abstract

Purpose

The purpose of this study is to analyze the influence of the main physical–numerical parameters in the computational evaluation of natural convection heat transfer rates in isothermal flat square plates in the laminar regime. Moreover by experimentally validate the results of the numerical models and define the best parameter settings for the problem situation studied.

Design/methodology/approach

The present work is an extension of the study by Verderio Junior et al. (2021), differing in the modeling, results analysis and conclusions for the laminar flow regime with Rade=1×105. The analysis of the influence and precision of the physical–numerical parameters: boundary conditions, degree of mesh refinement, refinement layers and κω SST and κε turbulence models, occurred from the results from 48 numerical models, which were simulated using the OpenFOAM® software. Comparing the experimental mean Nusselt number with the numerical values obtained in the simulations and the analysis of the relative errors were used in the evaluation of the advantages, restrictions and selection of the most adequate parameters to the studied problem situation.

Findings

The numerical results of the simulations were validated, with excellent precision, from the experimental reference by Kitamura et al. (2015). The application of the κω SST and κε turbulence models and the boundary conditions (with and without wall functions) were also physically validated. The use of the κω SST and κε turbulence models, in terms of cost-benefit and precision, proved to be inefficient in the problem situation studied. Simulations without turbulence models proved to be the best option for the physical model for the studies developed. The use of refinement layers, especially in applications with wall functions and turbulence models, proved unfeasible.

Practical implications

Use of the physical–numerical parameters studied and validated, and application of the modeling and analysis methodology developed in projects and optimizations of natural convection thermal systems in a laminar flow regime. Just like, reduce costs and the dependence on the construction of experimental apparatus to obtain experimental results and in the numerical-experimental validation process.

Social implications

Exclusive use of free and open-source computational tools as an alternative to feasible research in the computational fluid dynamics area in conditions of budget constraints and lack of higher value-added infrastructure, with applicability in the academic and industrial areas.

Originality/value

The results and discussions presented are original and new for the applied study of laminar natural convection in isothermal flat plate, with analysis and validation of the main physical and numerical influence parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 June 2021

Sílvio Aparecido Verdério Júnior, Vicente Luiz Scalon, Santiago del Rio Oliveira and Mario Cesar Ito

This paper aims to study, experimentally validate and select the main physical and numerical parameters of influence in computational numerical simulations to evaluate mean heat…

Abstract

Purpose

This paper aims to study, experimentally validate and select the main physical and numerical parameters of influence in computational numerical simulations to evaluate mean heat flux by natural convection on square flat plates.

Design/methodology/approach

Several numerical models were built to study the influence of physical and numerical parameters about the predictions of the natural convection heat transfer rates on the surface of a flat plate with aspect ratio = 1, in isothermal conditions, turbulent regime and using the free and open-source software OpenFOAM®. The studied parameters were: boundary conditions (using or not using wall functions in properties ε, κ, νt and ω), degree of mesh refinement, refinement layers and turbulence models [κε and κω Shear Stress Transport (SST)]. From the comparison of the values of the mean Nusselt number, obtained from numerical simulations and literature experimental results, the authors evaluated the precision of the studied parameters, validating and selecting the most appropriate to the analyzed problem situation.

Findings

The validation and agreement of the numerical results could be proven with excellent precision from experimental references of the technical scientific literature. More refined meshes with refinement layers were not suitable for the studies developed. The κ – ε and κ – ω SST turbulence models, in meshes without refinement layers, proved to be equivalent. Whether or not to use wall functions in turbulent boundary conditions proved to be irrelevant as to the accuracy of results for the problem situation studied.

Practical implications

Use of the physical and numerical parameters is studied and validated for various applications in natural convection heat transfer of technology and industry areas.

Social implications

Use of free and open-source software as a research tool in the Computational Fluid Dynamics (CFD) area, especially in conditions without large financial resources or state-of-the-art infrastructure.

Originality/value

To the best of the authors’ knowledge, this work is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2024

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho and Vicente Luiz Scalon

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on…

Abstract

Purpose

The purpose of this study is to numerically investigate the geometric influence of different corrugation profiles (rectangular, trapezoidal and triangular) of varying heights on the flow and the natural convection heat transfer process over isothermal plates.

Design/methodology/approach

This work is an extension and finalization of previous studies of the leading author. The numerical methodology was proposed and experimentally validated in previous studies. Using OpenFOAM® and other free and open-source numerical-computational tools, three-dimensional numerical models were built to simulate the flow and the natural convection heat transfer process over isothermal corrugation plates with variable and constant heights.

Findings

The influence of different geometric arrangements of corrugated plates on the flow and natural convection heat transfer over isothermal plates is investigated. The influence of the height ratio parameter, as well as the resulting concave and convex profiles, on the parameters average Nusselt number, corrected average Nusselt number and convective thermal efficiency gain, is analyzed. It is shown that the total convective heat transfer and the convective thermal efficiency gain increase with the increase of the height ratio. The numerical results confirm previous findings about the predominant effects on the predominant impact of increasing the heat transfer area on the thermal efficiency gain in corrugated surfaces, in contrast to the adverse effects caused on the flow. In corrugations with heights resulting in concave profiles, the geometry with triangular corrugations presented the highest total convection heat transfer, followed by trapezoidal and rectangular. For arrangements with the same area, it was demonstrated that corrugations of constant and variable height are approximately equivalent in terms of natural convection heat transfer.

Practical implications

The results allowed a better understanding of the flow characteristics and the natural convection heat transfer process over isothermal plates with corrugations of variable height. The advantages of the surfaces studied in terms of increasing convective thermal efficiency were demonstrated, with the potential to be used in cooling systems exclusively by natural convection (or with reduced dependence on forced convection cooling systems), including in technological applications of microelectronics, robotics, internet of things (IoT), artificial intelligence, information technology, industry 4.0, etc.

Originality/value

To the best of the authors’ knowledge, the results presented are new in the scientific literature. Unlike previous studies conducted by the leading author, this analysis specifically analyzed the natural convection phenomenon over plates with variable-height corrugations. The obtained results will contribute to projects to improve and optimize natural convection cooling systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2020

Wagner de Campos Galuppo, Ana Magalhães, Luís Lima Ferrás, João Miguel Nóbrega and Célio Fernandes

The purpose of this paper is to develop new boundary conditions for simulating the injection molding process of polymer melts.

296

Abstract

Purpose

The purpose of this paper is to develop new boundary conditions for simulating the injection molding process of polymer melts.

Design/methodology/approach

The boundary conditions are derived and implemented to simulate real-life air vents (used to allow the air escape from the mold). The simulations are performed in the computational library OpenFOAM® by considering two different fluid models, namely, Newtonian and generalized Newtonian (Bird–Carreau model).

Findings

A detailed study on the accuracy of the solver interFoam for simulating the filling stage is presented, by considering simple geometries and adaptive mesh refinement. The verified code is then used to study the three-dimensional filling of a more complex geometry.

Originality/value

The results obtained showed that the numerical method is stable and allows one to model the filling process, simulating the real injection molding process.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2015

Teresa Parra-Santos, J.R. Pérez-Domínguez, R.Z. Szasz and F. Castro-Ruiz

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact…

Abstract

Purpose

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact flame. Therefore, it is necessary to design efficient swirlers. Flow patterns are simulated for the different swirl devices proposed in this work. Two axial-swirlers are studied: one based on curve-vanes consisting of a straight line with an arc of a circle as the trailing edge and the other is the common flat-vanes. The purpose of this paper is to assess the accuracy of different swirl generators using a well-known benchmark test case.

Design/methodology/approach

This work deals with modelling the swirler using two approaches: the general purpose Computational fluid dynamics (CFD) solver Ansys-Fluent® and the suite of libraries OpenFOAM® to solve the Reynolds Averaged Navier Stokes equations, showing there is a slight deviation between both approaches. Their performance involves analyzing not only the Swirl number but also the size of the recirculation zones in the test chamber. A subsequent process on the flow patterns was carried out to establish the intensity of segregation which provides insight into the quality of mixing.

Findings

CFD models are feasible tools to predict flow features. It was found that numerical results tend to reduce the inner recirculation zone (IRZ) radial size. Further, an increase of the swirl number involves larger IRZ and a smaller outer recirculation zone (ORZ). The curved swirler displays a better axi-symmetric behaviour than flat vanes. There is weak influence of the chord vanes on the swirl number. The number of vanes is a compromise of head loses and guidance of the flow.

Originality/value

The paper offers two different approaches to solve turbulent swirling flows. One based in a general contrasted commercial tool and other using open source code. Both models show similar performance. An innovative set up for an axial swirler different from the conventional flat vanes was proposed.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 March 2018

Kannan B.T. and Panchapakesan N.R.

This study aims to investigate the effects of nozzle momentum flux distribution on the flow field characteristics.

Abstract

Purpose

This study aims to investigate the effects of nozzle momentum flux distribution on the flow field characteristics.

Design/methodology/approach

The nozzle configuration consists of a central nozzle surrounded by four nozzles. All nozzles have the same diameter and constant separation between nozzles. OpenFOAM® is used for simulating the jet flow. Reynolds-averaged Navier-Stokes (RANS) equations are solved iteratively with a first-order closure for turbulence. Pitot-static tube with differential pressure transducer is used for mean velocity measurements. The comparison of computed results with experimental data shows similar trend and acceptable validation.

Findings

According to the results, the momentum flux distribution significantly alters the near field of multiple turbulent round jets. Highly non-linear decay region in the near field is found for the cases having higher momentum in the outer jets. As a result of merging, increased positive pressure is found in the mixing region. Higher secondary flows and wider mixing region are reported as a result of momentum transfer from axial to lateral directions by Reynolds stresses.

Research limitations/implications

The present study is limited to isothermal flow of air jet in air medium.

Social implications

Optimum momentum flux distribution in multijet injector of a combustor can reap better mixing leading to better efficiency and lesser environmental pollution.

Originality/value

As summary, the contributions of this paper in the field of turbulent jets are following: simulations for various momentum distribution cases have been performed. In all the cases, the flow at the nozzle exit is subsonic along with constant velocity profile. To simulate proper flow field, a large cylinder-type domain with structured grid is used with refinements toward the nozzle exit and jet axis. The results show that the non-linearity increases with increase in momentum of outer jets. Longer merging zones are reported for cases with higher momentum in outer nozzles using area-averaged turbulent kinetic energy. Similarly, wider mixing regions are reported using secondary flow parameter and visualizations.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 February 2019

Corrado Groth, Emiliano Costa and Marco Evangelos Biancolini

Numerical simulation of icing has become a standard. Once the iced shape is known, however, the analyst needs to update the computational fluid dynamics (CFD) grid. This paper…

Abstract

Purpose

Numerical simulation of icing has become a standard. Once the iced shape is known, however, the analyst needs to update the computational fluid dynamics (CFD) grid. This paper aims to propose a method to update the numerical mesh with ice profiles.

Design/methodology/approach

The present paper concerns a novel and fast radial basis functions (RBF) mesh morphing technique to efficiently and accurately perform ice accretion simulations on industrial models in the aviation sector. This method can be linked to CFD analyses to dynamically reproduce the ice growth.

Findings

To verify the consistency of the proposed approach, one of the most challenging ice profile selected in the LEWICE manual was replicated and simulated through CFD. To showcase the effectiveness of this technique, predefined ice profiles were automatically applied on two-dimensional (2D) and three-dimensional (3D) cases using both commercial and open-source CFD solvers.

Practical implications

If ice accreted shapes are available, the meshless characteristic of the proposed approach enables its coupling with the CFD solvers currently supported by the RBF4AERO platform including OpenFOAM, SU2 and ANSYS Fluent. The advantages provided by the use of RBF are the high performance and reliability, due to the fast application of mesh smoothing and the accuracy in controlling surface mesh nodes.

Originality/value

As far as authors’ knowledge is concerned, this is the first time in scientific literature that RBF are proposed to handle icing simulations. Due to the meshless characteristic of the RBF mesh morphing, the proposed approach is cross solver and can be used for both 2D and 3D geometries.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 June 2023

Sílvio Aparecido Verdério Júnior, Pedro J. Coelho, Vicente Luiz Scalon and Santiago del Rio Oliveira

The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular…

Abstract

Purpose

The purpose of this study is to numerically and experimentally investigate the natural convection heat transfer in flat plates and plates with square, trapezoidal and triangular corrugations.

Design/methodology/approach

This work is an extension of the previous studies by Verderio et al. (2021a, 2021b, 2021c, 2021d, 2022a). An experimental apparatus was built to measure the plates’ temperatures during the natural convection cooling process. Several physical parameters were evaluated through the experimental methodology. Free and open-source computational tools were used to simulate the experimental conditions and to quantitatively and qualitatively evaluate the thermal plume characteristics over the plates.

Findings

The numerical results were experimentally validated with reasonable accuracy in the range of studied RaLP for the different plates. Empirical correlations of Nu¯LPexp=f(RaLP), h¯conv=f(RaLP) and Nu¯LPexp(A/AP)=f(RaLP), with good accuracy and statistical representativeness, were obtained for the studied geometries. The convective thermal efficiency of corrugated plates (Δη), as a function of RaLP, was also experimentally studied quantitatively. In agreement with the findings of Oosthuizen and Garrett (2001), the experimental and numerical results proved that the increase in the heat exchange area of the corrugations has a greater influence on the convective exchange and the thermal efficiency than the disturbances caused in the flow (which reduce h¯conv). The plate with trapezoidal corrugations presented the highest convective thermal efficiency, followed by the plates with square and triangular corrugations. It was also proved that the thermal efficiency of corrugated plates increases with RaLP.

Practical implications

The results demonstrate that corrugated surfaces have greater thermal efficiency than flat plates in heating and/or cooling systems by natural convection. This way, corrugated plates can reduce the dependence on auxiliary forced convection systems, with application in technological areas and Industry 4.0.

Originality/value

The empirical correlations obtained for the corrected Nusselt number and thermal efficiency for the corrugated plate geometries studied are original and unpublished, as well as the experimental validation of the developed three-dimensional numerical code.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 28