Search results

1 – 10 of 20
Article
Publication date: 25 July 2018

Hau Ching Phyllis Chung and Kemi Adeyeye

The purpose of this paper is twofold: first, to investigate the flood impact on a detached dwelling based on physical attributes related to the positioning, form and orientation…

Abstract

Purpose

The purpose of this paper is twofold: first, to investigate the flood impact on a detached dwelling based on physical attributes related to the positioning, form and orientation of the house, and second, to investigate the effectiveness of property-level protection (PLP) to mitigate the direct structural damage of the house and the degree of floodwater ingress within the house.

Design/methodology/approach

The methods included modelling and simulation within the ANSYS Fluent® computational fluid dynamics software. Flooding scenarios with constrained parameters using theoretical modelling methods/tools were used to test the research hypotheses. Therefore, the results obtained will match the what-if scenarios considered if/based on the standard equations and assumptions made in the idealised model.

Findings

It was found that the position, orientation and form of an individual dwelling with brick and block construction informs the impact of the applied pressure on the structure and water ingress. Increase in pressure on the structure was noted from 0.3 m. All examined PLP mitigated the risk of structural damage if applied in consideration with other interventions e.g. mortar sealing. The use of non-return valves could potentially increase the pressure on the structure, but was also found to be effective in reducing water ingress. Findings should be considered in conjunction with the assumptions and exceptions of this study.

Research limitations/implications

The limitations of this study are that the findings are based on an idealised model of a single detached house, with no landscape obstruction to the watercourse. This mathematical approach concerned with developing the normative models may therefore not fully describe the real-world complex phenomena. But it provides the first vision and an objective basis to answer the questions under study, and to propose usable outputs. Flooding caused from internal sources (e.g. bursting of pipes, roof leaks) or seepage from the ground and moisture through the walls were excluded. Building content was not modelled.

Practical implications

Common property-level flood interventions are typically tested to mitigate water ingress to the house. This study extends this approach to include the prevention of structural damage to the external walls; this can help to avoid the indiscriminate use of property-level flood prevention solutions without full understanding of their degree of effectiveness or impact on the building’s structural integrity. This study is practically significant because it provides outputs and means to examine which intervention(s) are better for delivering flood protection to a standard brick/block detached house type. This knowledge is highly beneficial for relevant stakeholders who can use it to deliver effective property-level flooding resilience measures.

Originality/value

The study provides useful insights for property owners and building professionals to explore suitable, cost-effective single property-level protection against flooding. Furthermore, the effective implementation of interventions can be used to achieve a customised, “fit for purpose” resilience retrofit.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 September 2019

Cesar Martin Venier, Andrés Reyes Urrutia, Juan Pablo Capossio, Jan Baeyens and Germán Mazza

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB…

Abstract

Purpose

The purpose of this study is to assess the performance of ANSYS Fluent® and OpenFOAM®, at their current state of development, to study the relevant bubbling fluidized bed (BFB) characteristics with Geldart A, B and D particles.

Design/methodology/approach

For typical Geldart B and D particles, both a three-dimensional cylindrical and a pseudo-two-dimensional arrangement were used to measure the bed pressure drop and solids volume fraction, the latter by digital image analysis techniques. For a typical Geldart A particle, specifically to examine bubbling and slugging phenomena, a 2 m high three-dimensional cylindrical arrangement of small internal diameter was used. The hydrodynamics of the experimentally investigated BFB cases were also simulated for identical geometries and operating conditions using OpenFOAM® v6.0 and ANSYS Fluent® v19.2 at identical mesh and numerical setups.

Findings

The comparison between experimental and simulated results showed that both ANSYS Fluent® and OpenFOAM® provide a fair qualitative prediction of the bubble sizes and solids fraction for freely-bubbling Geldart B and D particles. For Geldart A particles, operated in a slugging mode, the qualitative predictions are again quite fair, but numerical values of relevant slug characteristics (length, velocity and frequency) slightly favor the use of OpenFOAM®, despite some deviations of predicted slug velocities.

Originality/value

A useful comparison of computational fluid dynamics (CFD) software performance for different fluidized regimes is presented. The results are discussed and recommendations are formulated for the selection of the CFD software and models involved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 April 2020

Ainslie French, Luigi Cutrone, Antonio Schettino, Marco Marini, Francesco Battista and Pasquale Natale

This paper aims to detail the reactive flow simulations of a LOX/CH4 multi-element rocket engine. The work has been conducted within the framework of the HYPROB-BREAD project…

Abstract

Purpose

This paper aims to detail the reactive flow simulations of a LOX/CH4 multi-element rocket engine. The work has been conducted within the framework of the HYPROB-BREAD project whose main objective is the design, manufacture and testing of a LOX/LCH4 regeneratively cooled ground demonstrator.

Design/methodology/approach

Numerical simulations have been carried out with both commercial software and CIRA software developed in house. Two sets of boundary conditions, nominal and experimental, have been applied from which a code-to-code validation has been effected with the former and a code-to-experiment validation with the latter.

Findings

The results presented include both flow data and heat fluxes as well as parameters associated with engine performance, and indicate an excellent agreement with experimental data of a LOX/CH4 multi-element rocket engine.

Originality/value

The research is unique as the CIRA code Numerical Experimental Tool (NExT) has been validated with the commercial software FLUENT as well as with experimental values from the firing of the LOX/CH4 rocket engine demonstrator.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 May 2015

Teresa Parra-Santos, J.R. Pérez-Domínguez, R.Z. Szasz and F. Castro-Ruiz

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact…

Abstract

Purpose

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact flame. Therefore, it is necessary to design efficient swirlers. Flow patterns are simulated for the different swirl devices proposed in this work. Two axial-swirlers are studied: one based on curve-vanes consisting of a straight line with an arc of a circle as the trailing edge and the other is the common flat-vanes. The purpose of this paper is to assess the accuracy of different swirl generators using a well-known benchmark test case.

Design/methodology/approach

This work deals with modelling the swirler using two approaches: the general purpose Computational fluid dynamics (CFD) solver Ansys-Fluent® and the suite of libraries OpenFOAM® to solve the Reynolds Averaged Navier Stokes equations, showing there is a slight deviation between both approaches. Their performance involves analyzing not only the Swirl number but also the size of the recirculation zones in the test chamber. A subsequent process on the flow patterns was carried out to establish the intensity of segregation which provides insight into the quality of mixing.

Findings

CFD models are feasible tools to predict flow features. It was found that numerical results tend to reduce the inner recirculation zone (IRZ) radial size. Further, an increase of the swirl number involves larger IRZ and a smaller outer recirculation zone (ORZ). The curved swirler displays a better axi-symmetric behaviour than flat vanes. There is weak influence of the chord vanes on the swirl number. The number of vanes is a compromise of head loses and guidance of the flow.

Originality/value

The paper offers two different approaches to solve turbulent swirling flows. One based in a general contrasted commercial tool and other using open source code. Both models show similar performance. An innovative set up for an axial swirler different from the conventional flat vanes was proposed.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 February 2019

Corrado Groth, Emiliano Costa and Marco Evangelos Biancolini

Numerical simulation of icing has become a standard. Once the iced shape is known, however, the analyst needs to update the computational fluid dynamics (CFD) grid. This paper…

Abstract

Purpose

Numerical simulation of icing has become a standard. Once the iced shape is known, however, the analyst needs to update the computational fluid dynamics (CFD) grid. This paper aims to propose a method to update the numerical mesh with ice profiles.

Design/methodology/approach

The present paper concerns a novel and fast radial basis functions (RBF) mesh morphing technique to efficiently and accurately perform ice accretion simulations on industrial models in the aviation sector. This method can be linked to CFD analyses to dynamically reproduce the ice growth.

Findings

To verify the consistency of the proposed approach, one of the most challenging ice profile selected in the LEWICE manual was replicated and simulated through CFD. To showcase the effectiveness of this technique, predefined ice profiles were automatically applied on two-dimensional (2D) and three-dimensional (3D) cases using both commercial and open-source CFD solvers.

Practical implications

If ice accreted shapes are available, the meshless characteristic of the proposed approach enables its coupling with the CFD solvers currently supported by the RBF4AERO platform including OpenFOAM, SU2 and ANSYS Fluent. The advantages provided by the use of RBF are the high performance and reliability, due to the fast application of mesh smoothing and the accuracy in controlling surface mesh nodes.

Originality/value

As far as authors’ knowledge is concerned, this is the first time in scientific literature that RBF are proposed to handle icing simulations. Due to the meshless characteristic of the RBF mesh morphing, the proposed approach is cross solver and can be used for both 2D and 3D geometries.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 October 2016

Marco Evangelos Biancolini, Emiliano Costa, Ubaldo Cella, Corrado Groth, Gregor Veble and Matej Andrejašič

The present paper aims to address the description of a numerical optimization procedure, based on mesh morphing, and its application for the improvement of the aerodynamic…

Abstract

Purpose

The present paper aims to address the description of a numerical optimization procedure, based on mesh morphing, and its application for the improvement of the aerodynamic performance of an industrial glider which suffers of a large separation occurring in the wing–fuselage junction region at high incidence angles.

Design/methodology/approach

Shape variations were applied to the baseline configuration through a mesh morphing technique founded on the mathematical framework of radial basis functions (RBF). The aerodynamic solutions were obtained coupling an RANS code with the mesh morphing tool RBF Morph™. Two shape modifiers were set up to generate a parametric numerical model. An optimization procedure, based on a design of experiment sampling, was set up implementing the fully automated workflow within a high performance computing (HPC) environment. The optimal candidates maximizing the aerodynamic efficiency were identified by means of a cubic RBF response surface approach.

Findings

The separation was significantly reduced, modifying the local geometry of fuselage and fairing and maintaining the wing aerofoil unchanged. A relevant aerodynamic efficiency improvement was finally gained.

Practical implications

The developed procedure proved to be a very powerful and efficient tool in facing aerodynamic design problems. However, it might be computationally very expensive if a large number of design variables are adopted and, in those cases, the method can be suitably used only within the HPC environment.

Originality/value

Such an optimization study is part of an explorative set of analyses that focused on better addressing the numerical strategies to be used in the development of the EU FP7 Project RBF4AERO.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2017

Harijono Djojodihardjo, Riyadh Ibraheem Ahmed, Abd Rahim Abu Talib and Azmin Shakrine Mohd Rafie

The purpose of this paper is to reformulate the governing equations incorporating major variables and parameters for the design a Micro Air Vehicle (MAV), to meet the desired…

Abstract

Purpose

The purpose of this paper is to reformulate the governing equations incorporating major variables and parameters for the design a Micro Air Vehicle (MAV), to meet the desired mission and design requirements.

Design/methodology/approach

Mathematical models for various spherical and cylindrical Coandă MAV configurations were rederived from first principles, and the performance measures were defined. To verify the theoretical prediction to a certain extent, a computational fluid dynamic (CFD) simulation for a Coandă MAV generic models was performed.

Findings

The major variables and parameters of Coandă MAV have been formulated into practical guidelines, which relate the lift (or thrust) produced for certain input variables, particularly the Coandă MAV jet momentum coefficient. The influences of the geometrical parameters are elaborated.

Research limitations/implications

The present analysis on Coandă jet-configured MAV is focused on the lift generation due to the Coandă jet effect through a meticulous analysis. The effects of viscosity, the Coandă jet thickness, the radius of curvature of the surface and the stability of Coandă jet are not considered and will be the subject of the following work.

Practical implications

The results obtained can be used for sizing in the preliminary design of Coandă MAVs.

Originality/value

Physical and mathematical models were developed which can describe the physical phenomena of the flow field near the Coandă MAV surfaces influenced by Coandă jet sheets and for obtaining a relationship between relevant variables and parameters to the lift of practical interest.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 August 2023

Lucilla Coelho de Almeida, Joao Americo Aguirre Oliveira Junior and Jian Su

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to…

Abstract

Purpose

This paper aims to present a novel approach for computing particle temperatures in simulations coupling computational fluid dynamics (CFD) and discrete element method (DEM) to predict flow and heat transfer in fluidized beds of thermally thick spherical particles.

Design/methodology/approach

An improved lumped formulation based on Hermite-type approximations for integrals to relate surface temperature to average temperature and surface heat flux is used to overcome the limitations of classical lumped models. The model is validated through comparisons with analytical solutions for a convectively cooled sphere and experimental data for a fixed particle bed. The coupled CFD-DEM model is then applied to simulate a Geldart D bubbling fluidized bed, comparing the results to those obtained using the classical lumped model.

Findings

The validation cases demonstrate that ignoring internal thermal resistance can significantly impact the temperature in cases where the Biot number is greater than 0.1. The results for the fixed bed case clearly demonstrate that the proposed method yields significantly improved outcomes compared to the classical model. The fluidized bed results show that surface temperature can deviate considerably from the average temperature, underscoring the importance of accurately accounting for surface temperature in convective heat transfer predictions and surface processes.

Originality/value

The proposed approach offers a physically more consistent simulation without imposing a significant increase in computational cost. The improved lumped formulation can be easily and inexpensively integrated into a typical DEM solver workflow to predict heat transfer for spherical particles, with important implications for various industrial applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2019

Corrado Groth, Ubaldo Cella, Emiliano Costa and Marco Evangelos Biancolini

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Abstract

Purpose

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Design/methodology/approach

High fidelity computer-aided engineering models (computational fluid dynamics [CFD] and computational structural mechanics) are coupled by embedding modal shapes into the CFD solver using RBF mesh morphing.

Findings

The theoretical framework is first explained and its use is then demonstrated with a review of applications including both steady and unsteady cases. Different flow and structural solvers are considered to showcase the portability of the concept.

Practical implications

The method is flexible and can be used for the simulation of complex scenarios, including components vibrations induced by external devices, as in the case of flapping wings.

Originality/value

The computation mesh of the CFD model becomes parametric with respect to the modal shape and, so, capable to self-adapt to the loads exerted by the surrounding fluid both for steady and transient numerical studies.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 20