Search results

1 – 10 of 159
Article
Publication date: 1 November 1996

Dariusz Gawin, Bernhard A. Schrefler and M. Galindo

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of…

1489

Abstract

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of the modified effective stress concept together with the capillary pressure relationship. Examines phase changes (evaporation‐condensation(, heat transfer through conduction and convection, as well as latent heat transfer. The governing equations in terms of gas pressure, capillary pressure, temperature and displacements are coupled non‐linear differential equations and are discretized by the finite element method in space and by finite differences in the time domain. The model is further validated with respect to a documented experiment on partially saturated soil behaviour, and the effects of two‐phase flow, as compared to the one‐phase flow solution, are analysed. Two other examples involving drying of a concrete wall and thermoelastic consolidation of partially saturated clay demonstrate the importance of proper physical modelling and of appropriate choice of the boundary conditions.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 May 2015

Raffaella Santagiuliana, Massimo Fabris and Bernhard Aribo Schrefler

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the…

Abstract

Purpose

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the existence after end of exploitation of a reversed subsidence bowl with minimum subsidence above the reservoir, as opposed to conventional subsidence bowls during exploitation which show maximum subsidence in the same location.

Design/methodology/approach

The paper analyses these new data about the existence after end of exploitation of a reversed subsidence bowl. The observed behaviour is reproduced successfully with a fully coupled two phase flow code in deforming reservoir rocks which incorporates a constitutive model for partially saturated porous media.

Findings

The paper provides successful simulations. These allow affirming with confidence that the explanation for the peculiar behaviour is reservoir flooding and partially saturated rock behaviour.

Research limitations/implications

Further research: other case studies where similar behaviour is expected, e.g. Ekofisk.

Practical implications

The paper includes implications for better management of reservoir exploitation schedules to minimize the observed phenomenon.

Originality/value

This paper explains the peculiar behaviour of subsidence above the depleted gas reservoir Ravenna Terra and confirms the conjecture that constitutive behaviour of partially saturated rocks is the origin of the observed phenomenon.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 December 2018

Toufiq Ouzandja and Mohamed Hadid

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil

Abstract

Purpose

This paper aims to present the investigation of the linear and nonlinear seismic site response of a saturated inhomogeneous poroviscoelastic soil profile for different soil properties, such as pore-water saturation, non-cohesive fines content FC, permeability k, porosity n and coefficient of uniformity Cu.

Design/methodology/approach

The inhomogeneous soil profile is idealized as a multi-layered saturated poroviscoelastic medium and is characterized by the Biot’s theory, with a shear modulus varying continuously with depth according to the Wichtmann’s model. Seismic response analysis has been evaluated through a computational model, which is based on the exact stiffness matrix method formulated in the frequency domain assuming that the incoming seismic waves consist of inclined P-SV waves.

Findings

Unlike the horizontal seismic response, the results indicate that the vertical one is strongly affected by the pore water saturation. Moreover, in the case of fully saturated soil profile, the same vertical response spectra are found for the two cases of soil behavior, linear and nonlinear.

Originality/value

This research is a detailed study of the geotechnical soil properties effect on the bi-directional seismic response of saturated inhomogeneous poroviscoelastic soil profile, which has not been treated before; the results are presented in terms of the peak acceleration ratio, as well as the free-field response spectra and the spectral ratio (V/H).

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2001

H.W. Zhang, O.M. Heeres, R. de Borst and B.A. Schrefler

Extends the stress update algorithm and the tangent operator recently proposed for generalized plasticity by De Borst and Heeres to the case of partially saturated soils, where on…

1086

Abstract

Extends the stress update algorithm and the tangent operator recently proposed for generalized plasticity by De Borst and Heeres to the case of partially saturated soils, where on top of the hydrostatic and deviatoric components of the (effective) stress tensor suction has to be considered as a third independent variable. The soil model used for the applications is the Bolzon‐Schrefler‐Zienkiewicz model, which is an extension of the Pastor‐Zienkiewicz model to partial saturation. The algorithm is incorporated in a code for partially saturated soil dynamics. Back calculation of a saturation test and simulation of surface subsidence above an exploited gas reservoir demonstrate the advantage of the proposed algorithm in terms of iteration convergence of the solution.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2003

Josef Eberhardsteiner, Günter Hofstetter, Günther Meschke and Peter Mackenzie‐Helnwein

In this paper, three research topics are presented referring to different aspects of multifield problems in civil engineering. The first example deals with long term behaviour of…

1280

Abstract

In this paper, three research topics are presented referring to different aspects of multifield problems in civil engineering. The first example deals with long term behaviour of wood under multiaxial states of stress and the effect of moisture changes on the deformation behaviour of wood. The second example refers to the application of a three‐phase model for soils to the numerical simulation of dewatering of soils by means of compressed air. The soil is modelled as a three phase‐material, consisting of the deformable soil skeleton and the fluid phases – water and compressed air. The third example is concerned with computational durability mechanics of concrete structures. As a particular example of chemically corrosive mechanisms, the material degradation due to the dissolution of calcium and external loading is addressed.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1995

Bernard A. Schrefler, Xiaoyong Zhan and Luciano Simoni

A fully coupled numerical model to simulate the complexbehaviour of soil deformation, water flow, airflow, and heatflow in porous media is developed. The following thermal…

Abstract

A fully coupled numerical model to simulate the complex behaviour of soil deformation, water flow, airflow, and heat flow in porous media is developed. The following thermal effects are taken into account: heat transfer through conduction and convection, flow, as well as viscosity and density variation of the fluids due to temperature gradients. The governing equations in terms of soil displacements, water and air pressures, and temperature are coupled non‐linear partial differential equations and are solved by the finite element method. Two examples are presented to demonstrate the model performances.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2008

M. Grujicic, B. Pandurangan, G.M. Mocko, S.T. Hung, B.A. Cheeseman, W.N. Roy and R.R. Skaggs

Detonation of landmines buried to different depths in water‐saturated sand is analyzed computationally using transient non‐linear dynamics simulations in order to quantify impulse…

Abstract

Detonation of landmines buried to different depths in water‐saturated sand is analyzed computationally using transient non‐linear dynamics simulations in order to quantify impulse loading. The computational results are compared with the corresponding experimental results obtained using the Vertical Impulse Measurement Fixture (VIMF), a structural mechanical device that enables direct experimental determination of the blast‐loading impulse. The structural‐dynamic/ballistic response of the Rolled Homogenized Armor (RHA) used in the construction of the VIMF witness plate and the remainder of the VIMF and the hydrodynamic response of the TNT high‐energy explosive of a mine and of the air surrounding the VIMF are represented using the standard materials models available in literature. The structural‐dynamic/ballistic response of the sand surrounding the mine, on the other hand, is represented using our recent modified compaction model which incorporates the effects of degree of saturation and the rate of deformation, two important effects which are generally neglected in standard material models for sand. The results obtained indicate that the use of the modified compaction model yields a substantially better agreement with the experimentally‐determined impulse loads over the use the original compaction model. Furthermore, the results suggest that, in the case of fully saturated sand, the blast loading is of a bubble type rather than of a shock type, i.e. the detonation‐induced momentum transfer to the witness plate is accomplished primarily through the interaction of the sand‐over‐burden (propelled by the high‐pressure expanding gaseous detonation by‐products) with the witness plate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2009

Lorenzo Sanavia

The purpose of this paper is to present a finite‐element analysis of the initiation of a slope failure in a small‐scale laboratory test due to pore pressure variation. To this…

Abstract

Purpose

The purpose of this paper is to present a finite‐element analysis of the initiation of a slope failure in a small‐scale laboratory test due to pore pressure variation. To this aim, a fully coupled multiphase model for saturated/partially saturated solid porous materials based on porous media mechanics is used.

Design/methodology/approach

The slope is described as a three‐phase deforming porous continuum where heat, water and gas flow are taken into account. The gas phase is modelled as an ideal gas composed of dry air and water vapour. Phase changes of water, heat transfer through conduction and convection and latent heat transfer are considered. The independent variables are: solid displacements, capillary pressure, gas pressure and temperature. The effective stress state is limited by Drucker‐Prager yield surface for the sake of simplicity. Small strains and quasi‐static loading conditions are assumed.

Findings

The paper shows that the multiphase modelling is able to capture the main experimental observations such as the local failure zone at the onset of slope failure and the outflow appeared in that zone. It also allows understanding of the triggering mechanisms of the failure zone.

Research limitations/implications

This work can be considered as a step towards a further development of a suitable numerical model for the simulation of non‐isothermal geo‐environmental engineering problems.

Practical implications

The multiphysics approach looks promising for the analysis of the onset of landslides, provided that the constitutive models for the multiphase porous media in saturated/unsaturated conditions and the related mechanical and hydraulic properties are described with sufficient accuracy.

Originality/value

Elasto‐plastic thermo‐hydro‐mechanical modelling of the initiation of slope failure subjected to variation in pore pressure boundary condition.

Details

Engineering Computations, vol. 26 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 April 2022

Manjeet Kumar, Xu Liu, Manjeet Kumari and Poonam Yadav

The purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.

Abstract

Purpose

The purpose of this paper is to investigate propagation characteristics of seismic waves at the welded interface of an elastic solid and unsaturated poro-thermoelastic solid.

Design/methodology/approach

A theoretical formulation of partially saturated poro-thermoelastic solid is used in this study established by Zhou et al. (2019). The incidence of two primary waves (P and SV) is taken. The incident wave from the elastic solid induces two reflected waves and five refracted waves. Due to viscous pore fluids, partially saturated poro-thermoelastic solid behave dissipative, whereas elastic solid behaves non-dissipative. As a result, both reflected and incident waves are homogeneous. However, all the refracted waves are inhomogeneous. A non-singular system of linear equations is formed by the coefficients of reflection and refraction for a specified incident wave. The energy shares of various reflected and refracted waves are determined by using these reflection and refraction factors. Finally, a sensitivity analysis is performed, and the effect of critical variables on energy partitioning at the interface is observed. The numerical example shows that throughout the process of reflection/refraction, the energy of incidence is conserved at all angles of incidences.

Findings

This study demonstrated two refracted (homogeneous) and five refracted (inhomogeneous) waves due to the incident wave from elastic solid. The reflection and refraction coefficients and partitioning of incident energy are acquired as a part of diverse physical parameters of the partially saturated poro-thermoelastic media. The interference energies between unlike pairs of refracted waves have been discovered due to the dissipative behavior of unsaturated poro-thermoelastic solid.

Originality/value

The sensitivity of different energy shares to various aspects of the considered model is graphically analyzed for a specific numerical model. The energy balance is maintained by combining interaction energy and bulk wave energy shares.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2009

M. Grujicic, B. Pandurangan, N. Coutris, B.A. Cheeseman, W. N. Roy and R.R. Skaggs

A large‐strain/high‐deformation rate model for clay‐free sand recently proposed and validated in our work [1,2], has been extended to sand containing relatively small (< 15vol.%…

Abstract

A large‐strain/high‐deformation rate model for clay‐free sand recently proposed and validated in our work [1,2], has been extended to sand containing relatively small (< 15vol.%) of clay and having various levels of saturation with water. The model includes an equation of state which represents the material response under hydrostatic pressure, a strength model which captures material behavior under elastic‐plastic conditions and a failure model which defines conditions and laws for the initiation and evolution of damage/failure in the material. The model was validated by comparing the computational results associated with detonation of a landmine in clayey sand (at different levels of saturation with water) with their computational counterparts.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 159