Search results

1 – 10 of 828
Article
Publication date: 1 January 2005

Nicolas Renon, Pierre Montmitonnet and Patrick Laborde

Purpose – The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a…

Abstract

Purpose – The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a vast class of soil treatment tools. Design/methodology/approach – We introduced soil constitutive equation in a FE software initially designed for the metal forming. We performed the numerical integration of the non‐linear ploughing problem. Non‐linearities encountered by the problem can be summed up: as soil constitutive equation (idealized with non‐associated compressible plastic law), unilateral frictional contact conditions (with a rigid body), geometrical non‐linearities (the ploughing tool) and large deformation range. To handle such difficulties we performed several numerical methods as implicit temporal scheme, Newton‐Raphson, non‐symmetric iterative solver, as well as proper approximation on stress and strain measures. Findings – Main results deal with the validation of the integration of the non‐linear constitutive equation in the code and a parametric study of the ploughing process. The influence of tool geometric parameters on the soil deformation modes and on the force experienced on the tools had been point out. As well, the influence of soil characteristics as compressibility had been analyzed. Research limitations/implications – This research is devoted to perform a numerical model applicable for a large range of soil treatment tools and for a large class of soil. However, taking into account all kind of soil is utopist. So limitations met are essentially related to the limit of the accuracy of the elasto‐plastic idealization for the soil. Practical implications – In practice the numerical model exposed in the paper can clearly help to improve and optimize any process involving superficial soil submitted to the mechanical action of a rigid body. Originality/value – The original value of the paper is to provide a global and an applicable numerical model able to take into account the main topics related to the ploughing of superficial soils. Industrials in geotechnics, in agriculture or in military purposes can benefit in using such numerical model.

Details

Engineering Computations, vol. 22 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 February 2012

Amir Hossein Alavi, Ali Mollahasani, Amir Hossein Gandomi and Jafar Boluori Bazaz

The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters…

Abstract

Purpose

The purpose of this paper is to develop new constitutive models to predict the soil deformation moduli using multi expression programming (MEP). The soil deformation parameters formulated are secant (Es) and reloading (Er) moduli.

Design/methodology/approach

MEP is a new branch of classical genetic programming. The models obtained using this method are developed upon a series of plate load tests conducted on different soil types. The best models are selected after developing and controlling several models with different combinations of the influencing parameters. The validation of the models is verified using several statistical criteria. For more verification, sensitivity and parametric analyses are carried out.

Findings

The results indicate that the proposed models give precise estimations of the soil deformation moduli. The Es prediction model provides considerably better results than the model developed for Er. The Es formulation outperforms several empirical models found in the literature. The validation phases confirm the efficiency of the models for their general application to the soil moduli estimation. In general, the derived models are suitable for fine‐grained soils.

Originality/value

These equations may be used by designers to check the general validity of the laboratory and field test results or to control the solutions developed by more in‐depth deterministic analyses.

Open Access
Article
Publication date: 29 August 2023

Yangsheng Ye, Degou Cai, Qianli Zhang, Shaowei Wei, Hongye Yan and Lin Geng

This method will become a new development trend in subgrade structure design for high speed railways.

Abstract

Purpose

This method will become a new development trend in subgrade structure design for high speed railways.

Design/methodology/approach

This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China, Japan, France, Germany, the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.

Findings

It is found that in foreign countries, the layered reinforced structure is generally adopted for the subgrade bed of high speed railways, and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed, while the simple structure is adopted in China; in foreign countries, different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice, while in China, compaction coefficient, subsoil coefficient and dynamic deformation modulus are adopted for such evaluation; in foreign countries, the subgrade top deformation control method, the subgrade bottom deformation control method, the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways, while in China, dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design. However, the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.

Originality/value

This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 29 January 2021

Honggui Di, Shihao Huang, Longlong Fu and Binglong Wang

The paper aims to predict longitudinal deformation of a tunnel caused by grouting under the tunnel bottom in advance according to the grouting parameters, which can ensure the…

Abstract

Purpose

The paper aims to predict longitudinal deformation of a tunnel caused by grouting under the tunnel bottom in advance according to the grouting parameters, which can ensure the safety of the tunnel structure during the grouting process and also help to design the grouting parameters.

Design/methodology/approach

The paper adopted the analytical approach for calculating the longitudinal deformation of a shield tunnel caused by grouting under a tunnel, including usage of the Mindlin’s solution, the minimum potential energy principle and case validation.

Findings

The paper provides a variational method for calculating the longitudinal deformation of a shield tunnel in soft soil caused by grouting under the tunnel, which has high computational efficiency and accuracy.

Originality/value

This paper fulfils an identified need to study how the longitudinal deformation of a shield tunnel in soft soil caused by grouting under the tunnel can be calculated.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2003

Josef Eberhardsteiner, Günter Hofstetter, Günther Meschke and Peter Mackenzie‐Helnwein

In this paper, three research topics are presented referring to different aspects of multifield problems in civil engineering. The first example deals with long term behaviour of…

1278

Abstract

In this paper, three research topics are presented referring to different aspects of multifield problems in civil engineering. The first example deals with long term behaviour of wood under multiaxial states of stress and the effect of moisture changes on the deformation behaviour of wood. The second example refers to the application of a three‐phase model for soils to the numerical simulation of dewatering of soils by means of compressed air. The soil is modelled as a three phase‐material, consisting of the deformable soil skeleton and the fluid phases – water and compressed air. The third example is concerned with computational durability mechanics of concrete structures. As a particular example of chemically corrosive mechanisms, the material degradation due to the dissolution of calcium and external loading is addressed.

Details

Engineering Computations, vol. 20 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2009

Jianqi Shen, Xianlong Jin, Yun Li and Jiyun Wang

This paper aims to provide a 3D finite element (FE) model for dynamic simulation of cutterhead and soil interaction in slurry shield tunneling.

1080

Abstract

Purpose

This paper aims to provide a 3D finite element (FE) model for dynamic simulation of cutterhead and soil interaction in slurry shield tunneling.

Design/methodology/approach

Dynamic numerical simulation of excavation process is realized by combined use of submodeling method and arbitrary Lagrangian Eulerian (ALE) approach. The model size reduction, soil mesh refinement and stress state initialization are fulfilled by submodeling. The large soil deformations, failures and flows are handled by ALE approach. Computation time is reduced by parallel domain decomposition with recursive coordinate bisection method. Validation of the proposed approach is achieved by comparing the numerical results with monitored data from the model test for Yangtze River tunneling project.

Findings

The proposed approach proves to be an effective technique to simulate the cutterhead and soil interaction dynamically in tunnel excavation. Comparative study on the effect of mesh density indicates the requirement of relative mesh refinement. Exploration of the parallel computing performance points out the best decomposed domain for the simulation. Parametric study on the effect of rotary speed and investigation on soil properties presents the significant factors for torque.

Practical implications

The proposed numerical model can help in the development process of reduced‐scale model test, as well as design and selection of slurry shield machines.

Originality/value

The originality comes from the need to evaluate the excavation performance of slurry shield machine in tunneling project. This contribution provides a 3D numerical approach, which takes into account the stress state in soil and dynamic contact effects between soil and cutterhead. In this work, large deformation in soil is handled. Besides, soil failures and flows are captured.

Details

Engineering Computations, vol. 26 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 August 2019

Wei-Hai Yuan, Wei Zhang, Beibing Dai and Yuan Wang

Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising…

363

Abstract

Purpose

Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising method to solve large deformation problems. This study aims to develop a computational framework for modelling the hydro-mechanical coupled porous media at large deformation based on the PFEM.

Design/methodology/approach

The PFEM is extended by adopting the linear and quadratic triangular elements for pore water pressure and displacements. A six-node triangular element is used for modelling two-dimensional problems instead of the low-order three-node triangular element. Thus, the numerical instability induced by volumetric locking is avoided. The Modified Cam Clay (MCC) model is used to describe the elasto-plastic soil behaviour.

Findings

The proposed approach is used for analysing several consolidation problems. The numerical results have demonstrated that large deformation consolidation problems with the proposed approach can be accomplished without numerical difficulties and loss of accuracy. The coupled PFEM provides a stable and robust numerical tool in solving large deformation consolidation problems. It is demonstrated that the proposed approach is intrinsically stable.

Originality/value

The PFEM is extended to consider large deformation-coupled hydro-mechanical problem. PFEM is enhanced by using a six-node quadratic triangular element for displacement and this is coupled with a four-node quadrilateral element for modelling excess pore pressure.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 September 2022

Mohamed Nabil Houhou, Tamir Amari and Abderahim Belounar

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on…

134

Abstract

Purpose

This paper aims to investigate the responses of single piles and pile groups due to tunneling-induced ground movements in a two-layered soil system. The analyses mainly focus on the additional single pile responses in terms of bending moment, lateral deflection, axial force, shaft resistance and pile settlement. Subsequently, a series of parametric studies were carried out to better understand the responses of single piles induced by tunneling. To give further understanding regarding the pile groups, a 2 × 2 pile group with two different pile head conditions, namely, free and capped, was considered.

Design/methodology/approach

Using the PLAXIS three-dimensional (3D) software, a full 3D numerical modeling is performed to investigate the effects of ground movements caused by tunneling on adjacent pile foundations. The numerical model was validated using centrifuge test data found in the literature. The relevance of the 3D model is also judged by comparison with the 2D plane strain model using the PLAXIS 2D code.

Findings

The numerical test results reveal that tunneling induces significant displacements and internal forces in nearby piles. The magnitude and distribution of internal forces depend mainly on the position of the pile toe relative to the tunnel depth and the distance between the pile and the vertical axis of the tunnel. As the volume loss increases from 1% to 3%, the apparent loss of pile capacity increases from 11% to 20%. By increasing the pile length from 0.5 to 1.5 times, the tunnel depth, the maximum pile settlement and lateral deflection decrease by about 63% and 18%, respectively. On the other hand, the maximum bending moment and axial load increase by about 7 and 13 times, respectively. When the pile is located at a distance of 2.5 times the tunnel diameter (Dt), the additional pile responses become insignificant. It was found that an increase in tunnel depth from 1.5Dt to 2.5Dt (with a pile length of 3Dt) increases the maximum lateral deflection by about 420%. Regarding the interaction between tunneling and group of piles, a positive group effect was observed with a significant reduction of the internal forces in rear piles. The maximum bending moment of the front piles was found to be higher than that of the rear piles by about 47%.

Originality/value

Soil is a complex material that shows differently in primary loading, unloading and reloading with stress-dependent stiffness. This general behavior was not possibly being accounted for in simple elastic perfectly plastic Mohr–Coulomb model which is often used to predict the behavior of soils. Thus, in the present study, the more advanced hardening soil model with small-strain stiffness (HSsmall) is used to model the non-linear stress–strain soil behavior. Moreover, unlike previous studies THAT are usually based on the assumption that the soil is homogeneous and using numerical methods by decoupled loadings under plane strain conditions; in this study, the pile responses have been exhaustively investigated in a two-layered soil system using a fully coupled 3D numerical analysis that takes into account the real interactions between tunneling and pile foundations. The paper presents a distinctive set of findings and insights that provide valuable guidance for the design and construction of shield tunnels passing through pile foundations.

Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 828