Search results

1 – 10 of 225
Article
Publication date: 11 January 2023

Naren Shankar Radha Krishnan, Irish Angelin S., Ganesan V.G. and Sathish Kumar K.

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with…

Abstract

Purpose

In comparison to a nozzle with a larger/finite separation distance (Thanigaiarasu et al., 2019), a thin-lip nozzle (Srinivasarao et al., 2017) minimizes drag. Coaxial nozzles with thin lips are an appropriate tool for studying high subsonic jets because it does not create a dominant re-circulation zone. This study aims to analyze the characteristic of separation distances, between primary and secondary nozzles, within the range of 0.7–3.2 mm which can be considered a thin lip.

Design/methodology/approach

A separation distance of 0.7  (Papamoschou, 2004), 1.7  and 2.65 mm (Lovaraju and Rathakrishnan, 2011) is considered for the present study. The main nozzle exit Mach number is maintained at a subsonic condition of Mach 0.6, and the co-flowing nozzle exit Mach number is varied from 0% (secondary jet stopped/single jet) to 100% (Mach 0.6) in steps of 20% with respect to the main nozzle exit Mach number. A comparison was made between these velocity ratios for all three lip thicknesses in the present study. Design mesh and analysis were done by using Gambit 2.6.4 and Fluent 6.12. Velocity contours and turbulence contours were studied for qualitative analysis.

Findings

When lip thickness increases from 0.7 to 2.65 mm, the potential core length (PCL) of the primary jet decreases marginally. Additionally, the PCL of the primary jet elongates significantly as the velocity ratio increases. The primary shear layer is dominant at 20% co-flow (20 PCF), less dominant at 60% co-flow (60 PCF) and almost disappeared at 100% co-flow (100 PCF). Concurrently, the secondary shear layer almost disappeared in 20 PCF, dominant in 60 PCF and more dominant in 100 PCF. Different zones such as initial merging, intermediate and fully merged zones are quantitatively and qualitatively analyzed.

Practical implications

Co-flow nozzle is used in turbofan engine exhaust. The scaled-down model of a turbofan engine has been analyzed. Core length is directly proportional to the jet noise. The PCL signifies the jet noise reduction in a high-speed jet. For a low-velocity ratio, the potential core is reduced and hence can reduce the jet noise. At the same time, as the velocity ratio increases, the mass flow rate of the coaxial increases. The increase in the mass flow increases the thrust of the engine. The aircraft engine designer should analyze the requirement of the aircraft and choose the optimal velocity ratio coaxial nozzle for the engine exhaust (Papamoschou, 2004).

Originality/value

There have been many research studies carried out previously at various lip thickness such as 0.4  (Georgiadis, 2003), 0.7  (Papamoschou, 2004), 1.5  (Srinivasarao et al., 2014a), 1.7  (Sharma et al., 2008), 2  (Naren, Thanigaiarasu and Rathakrishnan, 2016), 2.65  (Lovaraju and Rathakrishnan, 2011), 3  (Inturiet al., 2022) and 3.2 mm (Perumal et al., 2020). However, there is no proper study to vary the lip thickness in this range from 0.7 to 3.2 mm to understand the flow behavior of a co-flowing jet.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 July 2024

Manigandan Sekar, Vijayaraja Kengaiah, Praveenkumar T.R. and Gunasekar P.

The purpose of this study is to investigate the effect of coaxial swirlers on acoustic emission and reduction of potential core length in jet engines.

Abstract

Purpose

The purpose of this study is to investigate the effect of coaxial swirlers on acoustic emission and reduction of potential core length in jet engines.

Design/methodology/approach

The swirlers are introduced in the form of curved vanes with angles varied from 0° to 130°, corresponding to swirl numbers of 0–1.5. These swirlers are fixed in the annular chamber and tested at different nozzle pressure ratios of 2, 4 and 6.

Findings

The study finds that transonic tones exist for the nonswirl jet, creating an unfavorable effect. However, these screech tones are eliminated by introducing a swirl jet at the nozzle exit. Weak swirl shows a greater reduction in noise than strong swirl at subsonic conditions. In addition, the introduction of swirl jets at all pressure ratios significantly reduces jet noise and core length in supersonic conditions, mitigating the noise created by shockwaves and leading to screech tone-free jet mixing.

Originality/value

The paper provides valuable insights into the use of coaxial swirlers for noise reduction and core length reduction in jet engines, particularly in supersonic conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 March 2022

Kriparaj K.G., Roy V. Paul, Tide P.S. and Biju N.

The purpose of this paper is to conduct an experimental investigation on the shock cell structure of jets emanating from a four-lobed corrugated nozzle using Schlieren imaging…

Abstract

Purpose

The purpose of this paper is to conduct an experimental investigation on the shock cell structure of jets emanating from a four-lobed corrugated nozzle using Schlieren imaging technique.

Design/methodology/approach

The Schlieren images were captured for seven different nozzle pressure ratios (NPR = 2, 3, 4, 5, 6, 7 and 8) and compared with the shock cell structure of a round nozzle with an identical exit area. The variation in the length of the shock cell, width of boundary interaction between adjacent shock cells, maximum width of first shock cell, Mach disk position and diameter for different NPR was measured from the Schlieren images and analysed.

Findings

A three-layer shock net observed in the jet emanating from the four-lobed corrugated nozzle is a novel concept in the field of under-expanded jet flows. A shock net represents interconnected layers of shock cells developed because of the interaction between the core and peripheral shock waves in a jet emanating from a corrugated lobed nozzle. Also, the pattern of shock net is different while taking Schlieren images across the groove and lobe sections. Thus, the shock net emerging from a corrugated lobed nozzle varies azimuthally and primarily depends on the nozzle exit cross section. The length of the shock cell, width of boundary interaction between adjacent shock cells, maximum width of first cell, Mach disk position and diameter were found to exhibit increasing trend with NPR.

Originality/value

A novel concept of interconnected layers of shock waves defined as “shock net” developed from a single jet emanating from a four-lobed corrugated nozzle was observed.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 September 2021

Vignesh Kumar Murugesan, Aravindh Kumar Suseela Moorthi and Ganapathy Subramanian L. Ramachandran

The purpose of this study is to understand experimentally the mixing characteristics of a two-stream exhaust system with a supersonic Mach 1.5 primary jet that exits the…

Abstract

Purpose

The purpose of this study is to understand experimentally the mixing characteristics of a two-stream exhaust system with a supersonic Mach 1.5 primary jet that exits the rectangular C-D nozzle surrounded by a sonic secondary jet from a convergent rectangular nozzle by varying the aspect ratio (AR = 2 and 3) similar to those that can be available for future high-speed commercial aircraft.

Design/methodology/approach

This paper focuses on the experimental results of effects of AR at various expansion levels of jets issued/delivered from a central rectangular convergent-divergent nozzle of AR 2 and 3 surrounded by a coflow from a convergent rectangular sonic nozzle. The lip thickness of the primary nozzle is 2.2 mm. various nozzle pressure ratios (NPRs) ranging from 2, 3, 3.69 and 4 were chosen for pressure measurements.

Findings

For all the NPRs, AR 3 had a shorter core than AR 2. Also, AR 3 was found to decay faster in the transition and fully developed zones. The lateral plots show that the AR has an influence on the jet spread.

Originality/value

The structure of waves existing in the potential core of the rectangular coflow jet along with the major and minor axis planes was visualized by the shadowgraph technique.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 1984

J.I. Ramos

A mathematical model has been developed to study turbulent, confined, swirling flows under reacting non‐premixed conditions. The model solves the conservation equations of mass…

Abstract

A mathematical model has been developed to study turbulent, confined, swirling flows under reacting non‐premixed conditions. The model solves the conservation equations of mass, momentum, energy, species, and two additional equations for the turbulent kinetic energy and the turbulent length scale. Combustion has been modelled by means of a one‐step overall chemical reaction. The numerical predictions based on the eddy‐break‐up model of turbulent combustion show a recirculation zone in the form of a one‐celled toroidal vortex at the combustor centreline. High levels of turbulence characterize the recirculation zone, whose diameter and velocity first decrease and then increase as the magnitude of the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl flow conditions. Counter‐swirl produces steeper velocity gradients at the inter‐jet shear layer, promotes faster mixing and yields better combustion efficiency than co‐swirl. The numerical results are compared with those obtained under non‐reacting conditions in order to assess the influence of the heat release on the size of the recirculation zone.

Details

Engineering Computations, vol. 1 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 5 May 2015

Teresa Parra-Santos, J.R. Pérez-Domínguez, R.Z. Szasz and F. Castro-Ruiz

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact…

Abstract

Purpose

One current trend in burner technology is to obtain high efficiency while keeping low levels of NOx emissions. A swirling flow in combustion ensures a fixed position of a compact flame. Therefore, it is necessary to design efficient swirlers. Flow patterns are simulated for the different swirl devices proposed in this work. Two axial-swirlers are studied: one based on curve-vanes consisting of a straight line with an arc of a circle as the trailing edge and the other is the common flat-vanes. The purpose of this paper is to assess the accuracy of different swirl generators using a well-known benchmark test case.

Design/methodology/approach

This work deals with modelling the swirler using two approaches: the general purpose Computational fluid dynamics (CFD) solver Ansys-Fluent® and the suite of libraries OpenFOAM® to solve the Reynolds Averaged Navier Stokes equations, showing there is a slight deviation between both approaches. Their performance involves analyzing not only the Swirl number but also the size of the recirculation zones in the test chamber. A subsequent process on the flow patterns was carried out to establish the intensity of segregation which provides insight into the quality of mixing.

Findings

CFD models are feasible tools to predict flow features. It was found that numerical results tend to reduce the inner recirculation zone (IRZ) radial size. Further, an increase of the swirl number involves larger IRZ and a smaller outer recirculation zone (ORZ). The curved swirler displays a better axi-symmetric behaviour than flat vanes. There is weak influence of the chord vanes on the swirl number. The number of vanes is a compromise of head loses and guidance of the flow.

Originality/value

The paper offers two different approaches to solve turbulent swirling flows. One based in a general contrasted commercial tool and other using open source code. Both models show similar performance. An innovative set up for an axial swirler different from the conventional flat vanes was proposed.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1986

J.I. Ramos

A mathematical model has been developed to study incompressible, isothermal, turbulent, confined, swirling flows. The model solves the conservation equations of mass, momentum…

Abstract

A mathematical model has been developed to study incompressible, isothermal, turbulent, confined, swirling flows. The model solves the conservation equations of mass, momentum, and two additional equations for the turbulent kinetic energy and the rate of dissipation of turbulent kinetic energy. The numerical predictions show a recirculation zone in the form of a one‐celled toroidal vortex at the combustor centreline. High levels of turbulence characterize the recirculation zone. The length, diameter and maximum velocity of the recirculation zone first decrease and then increase as the magnitude of the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl flow conditions. Counter‐swirl produces steeper velocity gradients at the inter‐jet shear layer and promotes faster mixing than co‐swirl. The numerical results also indicate that the mass of the recirculation zone first decreases and then increases as the outer swirl number is first decreased from counter‐swirl to zero and then increased to co‐swirl conditions. The diameter, maximum velocity and mass of the recirculation zone are monotonically increasing functions of the inner jet swirl number. The recirculation zone length, diameter and mass are almost independent of the Reynolds number and outer‐to‐inner jet axial velocity ratio.

Details

Engineering Computations, vol. 3 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 22 March 2013

Nima Tajallipour, Vimal Kumar and Marius Paraschivoiu

The purpose of this paper is to investigate a large‐eddy simulation, using low order numerical discretization and upwinding schemes on unstructured grids, for a turbulent free jet

Abstract

Purpose

The purpose of this paper is to investigate a large‐eddy simulation, using low order numerical discretization and upwinding schemes on unstructured grids, for a turbulent free jet at Mach number 0.95. The accuracy and stability performance is discussed for the finite element/volume upwinding numerical code used.

Design/methodology/approach

This code is equipped with a self‐adaptive upwinding method which has been previously developed to reduce the numerical dissipation of applied low order flux calculation on unstructured elements using Roe's scheme. Herein, this method is used to numerically investigate a high Reynolds, compressible turbulent free jet and compare the results with a recently published set of experimental data. The effect of grid size is also investigated. A reasonable good agreement with the experimental measurements is obtained.

Findings

Based on the results, it is concluded that the developed self‐adaptive upwinding scheme provides a considerably better emulation of the flow regime in comparison to the full‐upwinding scheme. Different case studies have been carried out to assess the performance of self‐adaptive upwinding method and the effect of the subgrid model.

Originality/value

This paper presents an original research on self‐adaptive upwinding scheme and the effect of the subgrid model on a compressible turbulent free jet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2020

Naren Shankar R., Kevin Bennett S., Dilip Raja N. and Sathish Kumar K.

This study aims to analyze co-flowing jets (CFJs) with constant velocity ratio (VR) and varying primary nozzle lip thickness (LT) to find a critical LT in CFJs below which mixing…

Abstract

Purpose

This study aims to analyze co-flowing jets (CFJs) with constant velocity ratio (VR) and varying primary nozzle lip thickness (LT) to find a critical LT in CFJs below which mixing enhances and beyond which mixing inhibits.

Design/methodology/approach

CFJs were characterized with a constant VR and varying LTs. A single free jet with a diameter equal to that of a primary nozzle of the CFJ was used for characteristic comparison. Numerical simulation is carried out and is validated with the experimental results.

Findings

The results show that within a critical limit, the mixing enhanced with an increase in LT. This was signified by a reduction in potential core length (PCL). Beyond this limit, mixing inhibited leading to the elongation of PCL. This limit was controlled by parameters such as LT and constant VR. A new region termed as influential wake zone is identified.

Practical implications

In this study, the VR is maintained constant and bypass ratio (BR) was varied from low value to very high values. Presently, subsonic commercial turbo fan operates under low to ultra-high BR. Hence the present study becomes vital to the current scenario.

Originality/value

To the best of the authors’ knowledge, this is the first effort to find the critical value of LT for a constant VR for compressible co-flow jets. The CFJs with constant VR and varying LT have not been studied in the past. The present study focuses on finding a critical LT below which mixing enhances and above which mixing inhibits.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 225