Search results

1 – 10 of 82
Article
Publication date: 2 January 2020

Rashmi N. and Mrinal Sarvagya

The purpose of this paper is to demonstrate a proficiency for accomplishing optimal CFO and keep down the error among the received and transmitted signal. Orthogonal…

Abstract

Purpose

The purpose of this paper is to demonstrate a proficiency for accomplishing optimal CFO and keep down the error among the received and transmitted signal. Orthogonal frequency-division multiplexing (OFDM) is considered as an attractive modulation scheme that could be adopted in wireless communication systems owing to its reliability in opposition to multipath interruptions under different subchannels. Carrier frequency offset (CFO) establishes inter-carrier interference that devastates the orthogonality between the subcarriers and fluctuates the preferred signal and minimizes the effectual signal-to-noise ratio (SNR). This results in corrupted system performance. For sustaining the subcarriers’ orthogonality, timing errors and CFOs have to be approximated and sufficiently compensated for. Single carrier modulation (SCM) is a major feature for efficient OFDM system.

Design/methodology/approach

This paper introduces a novel superposition coded modulation-orthogonal frequency-division multiplexing (SCM-OFDM) system with optimal CFO estimation using advanced optimization algorithm. The effectiveness of SCM-OFDM is validated by correlating the transmitted and received signal. Hence, the primary objective of the current research work is to reduce the error among the transmitted and received signal. The received signal involves CFO, which has to be tuned properly to get the signal as closest as possible with transmitted signal. The optimization or tuning of CFO is done by improved grey wolf optimization (GWO) called GWO with self-adaptiveness (GWO-SA). Further, it carries the performance comparison of proposed model with state-of-the-art models with the analysis on bit error rate (BER) and mean square error (MSE), thus validating the system’s performance.

Findings

From the analysis, BER of the proposed and conventional schemes for CFO at 0.25 was determined, where the adopted scheme at 10th SNR was 99.6 per cent better than maximum likelihood, 99.6 per cent better than least mean square (LMS), 99.3 per cent better than particle swarm optimization (PSO), 75 per cent better than genetic algorithm (GA) and 25 per cent better than GWO algorithms. Moreover, MSE at 1st SNR, the proposed GWO-SA scheme, is 4.62 per cent better than LMS, 60.1 per cent better than PSO, 37.82 better than GA and 67.85 per cent better than GWO algorithms. Hence, it is confirmed that the performance of SCM-OFDM system with GWO-SA-based CFO estimation outperformed the state-of-the-art techniques.

Originality/value

This paper presents a technique for attaining optimal CFO and to minimize the error among the received and transmitted signal. This is the first work that uses GWO-SA for attaining optimal CFO.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 3 December 2020

Renuka N. and Satya Sairam M.

The tremendous growth of wireless applications and the demand for high data rate, the spectrum utilization improvement has been the most crucial challenges for wireless…

Abstract

Purpose

The tremendous growth of wireless applications and the demand for high data rate, the spectrum utilization improvement has been the most crucial challenges for wireless communication. Adapting cognitive radio with orthogonal frequency division multiplexing or offset quadrature amplitude modulation (OFDM/OQAM) improves the spectrum and energy efficiencies.

Design/methodology/approach

Thus, it overcomes the spectral leakage problem at the transmitter side and leads to less interference from secondary user (SUs) to primary user (PUs) and between the SUs in cognitive radio technology. The benefit of exploiting pulse shape filtering in the OFDM/OQAM is to not only eliminate the requirement of the guard bands but also reduce the out of band energy transmission, which also improves the spectral isolation from the neighboring systems. But the high peak to average power ratio (PAPR) phenomenon is a common issue in the majority of the multicarrier modulation systems and thus OFDM/OQAM is no exception in this case.

Findings

Therefore, this paper aims to examine the effect of integrating the Walsh–Hadamard Transform (WHT) on the power spectral density and investigates the problem of PAPR in the WHT/OQAM system.

Originality/value

Thus, it overcomes the spectral leakage problem at the transmitter side and leads to less interference from SUs to PUs and between the SUs in cognitive radio technology. The benefit of exploiting pulse shape filtering in the OFDM/OQAM is to not only eliminate the requirement of the guard bands but also reduce the out of band energy transmission, which also improves the spectral isolation from the neighboring systems. But the high PAPR phenomenon is a common issue in the majority of the multicarrier modulation systems thus OFDM/OQAM is no exception in this case.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 14 August 2017

Sanjay I. Nipanikar and V. Hima Deepthi

Fueled by the rapid growth of internet, steganography has emerged as one of the promising techniques in the communication system to obscure the data. Steganography is defined as…

Abstract

Purpose

Fueled by the rapid growth of internet, steganography has emerged as one of the promising techniques in the communication system to obscure the data. Steganography is defined as the process of concealing the data or message within media files without affecting the perception of the image. Media files, like audio, video, image, etc., are utilized to embed the message. Nowadays, steganography is also used to transmit the medical information or diagnostic reports. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the novel wavelet transform-based steganographic method is proposed for secure data communication using OFDM system. The embedding and extraction process in the proposed steganography method exploits the wavelet transform. Initially, the cost matrix is estimated by the following three aspects: pixel intensity, edge transformation and wavelet transform. The cost estimation matrix provides the location of the cover image where the message is to be entrenched. Then, the wavelet transform is utilized to embed the message into the cover image according to the cost value. Subsequently, in the extraction process, the wavelet transform is applied to the embedded image to retrieve the message efficiently. Finally, in order to transfer the secret information over the channel, the newly developed wavelet-based steganographic method is employed for the OFDM system.

Findings

The experimental results are evaluated and performance is analyzed using PSNR and MSE parameters and then compared with existing systems. Thus, the outcome of our wavelet transform steganographic method achieves the PSNR of 71.5 dB which ensures the high imperceptibility of the image. Then, the outcome of the OFDM-based proposed steganographic method attains the higher PSNR of 71.07 dB that proves the confidentiality of the message.

Originality/value

In the authors’ previous work, the embedding and extraction process was done based on the cost estimation matrix. To enhance the security throughout the communication system, the novel wavelet-based embedding and extraction process is applied to the OFDM system in this paper. The idea behind this method is to attain a higher imperceptibility and robustness of the image.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 29 June 2020

Amir M.U. Wagdarikar and Ranjan K. Senapati

The technique for hiding confidential data in specific digital media by enhancing the graphical contents is known as watermarking. The dissemination of information over a secure…

Abstract

Purpose

The technique for hiding confidential data in specific digital media by enhancing the graphical contents is known as watermarking. The dissemination of information over a secure channel is essential for multimedia applications. The purpose of this study is to develop a secure communication approach for OFDM system.

Design/methodology/approach

This paper exploits a secure communication in the orthogonal frequency division multiplexing (OFDM) system using wavelet-based video watermarking technique. In this work, the Chronological-MS algorithm is used for securing the data communication in the OFDM system. Here, the secret message is embedded in video frames using wavelet transform for hiding sensitive information and the hidden information is transmitted over the OFDM system. The Chronological-MS algorithm is used for selecting the optimal regions in the video for embedding secret message. In embedding phase, wavelet coefficients are obtained by applying wavelet transform on the frame for embedding the secret message. Meanwhile, in extraction phase, the inverse wavelet transform is applied to extract the secret message.

Findings

Considering number of frames, the maximum Peak signal-to-noise ratio (PSNR) value is attained by proposed Wavelet + Chronological MS method for Video 2 with value 73.643 dB, respectively. Meanwhile, the minimum mean squared error (MSE) attained by the proposed Wavelet + Chronological MS method is when considering number of frames with MSE values as 0.001 for both Videos 1 and 2. The minimum bit error rate (BER) value is attained by the proposed method with value 0.00009 considering random noise with Video 1. Thus, the proposed Wavelet + Chronological MS have shown better results than the existing techniques.

Originality/value

This work proposes a wavelet-based watermarking method using Chronological-MS, for initiating secured communication over an OFDM. One of the main advantages of wavelets is that they offer a simultaneous localization in time and frequency domain. Hence, the proposed method offers the highly secured data transmission over the OFDM.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 24 January 2022

Shobha Y.K. and Rangaraju H.G.

In order to optimize BER and to substantiate performance measures, initially, the filter bank multicarrier (FBMC) quadrature amplitude modulation (QAM) performance metrics are…

Abstract

Purpose

In order to optimize BER and to substantiate performance measures, initially, the filter bank multicarrier (FBMC) quadrature amplitude modulation (QAM) performance metrics are evaluated with the cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) system. The efficiency of CP-OFDM, as well as FBMC/QAM that is transmitting over specific fading channels, is evaluated in terms of quality trade-off metrics over bit error rate (BER) as well as modulation order. When compared with the traditional FBMC systems, the proposed FBMC QAM system shows better performance. The performance metrics of FBMC/QAM with the inclusion of multiuser multiple-input-multiple-output (MUMIMO) is validated with worst case channel environment. The performance penalty gap that exists in CP- OFDM is compared with improved FBMC QAM in terms of both BER and OOB radiation measures. The BER trade off comparison between ML and MMSE optimally determine the prominent signal detection model for high performance FBMC QAM system.

Design/methodology/approach

The main objective of this research work is to provide perceptions about performance, co-channel interference avoidance as well as about the techniques that are used for minimizing the complexity of the system that is related to FBMC QAM structure for reducing intrinsic interference with higher spectral features as well as maximal likelihood (ML) detector systems.

Findings

This research work also looks at the efficiency of multiuser multiple-input-multiple-output (MU-MIMO) FBMC/QAM over nonlinear channels. Furthermore, when compared with OFDM, it also significantly reduces the penalty gap efficiency, thereby enabling the accessibility of the proposed FBMC QAM system from BER as well as implementation point of view. Finally, the signal detection is facilitated by the sub-detector and is achieved on the downlink side by making use of threshold-driven statistical measures that accurately minimize the complexity trade-off measures of the ML detector over modulation order. The computation of the proposed FBMC method’s BER performance measures was carried out through MATLAB simulation environments, as well as efficiency of the suggested work was demonstrated through detailed analyses.

Originality/value

This research work intend to combine the efficient MU-MIMO based transmission scheme with optimal FBMC/QAM for improved QoS over highly nonlinear channels which includes both delay spread and Doppler effects. And optimal signal detection model is facilitated at the downlink side by making use of threshold-driven statistical measures that accurately minimize the complexity trade-off measures of the ML detector over modulation order. The computation of the proposed FBMC method’s BER performance measures was carried out through MATLAB simulation environments, as well as efficiency of the suggested work was demonstrated through detailed analyses.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 4 January 2016

Shravan Kumar Bandari, V.V. Mani and A. Drosopoulos

The purpose of this paper is to study the performance of generalized frequency division multiplexing (GFDM) in some frequency selective fading channels. The exact symbol error…

3269

Abstract

Purpose

The purpose of this paper is to study the performance of generalized frequency division multiplexing (GFDM) in some frequency selective fading channels. The exact symbol error rate (SER) expressions in Hoyt (Nakagami-q) and Weibull-v fading channels are derived. A GFDM transceiver simulation test bed is provided to validate the obtained analytical expressions.

Design/methodology/approach

Modern cellular system demands higher data rates, very low-latency transmissions and sensors with ultra low-power consumption. Current cellular systems of the fourth generation (4G) are not able to meet these emerging demands of future mobile communication systems. To address this requirement, GFDM, a novel multi-carrier modulation technique is proposed to satisfy the future needs of fifth generation technology. GFDM is a block-based transmission method where pulse shaping is applied circularly to individual subcarriers. Unlike traditional orthogonal frequency division multiplexing, GFDM transmits multiple symbols per subcarrier. The authors have used the probability density function approach in solving the final analytical expressions.

Findings

Detailed analysis of GFDM performance under Hoyt-q, Weibull-v and Log-Normal Shadowing fading channels. Exact analytical formulae were derived which support the simulations carried out by authors and other authors. The exact dependence of SER on fading parameters and roll-off factor α in the raised cosine pulse shape filter was determined.

Practical implications

Development and fabrication of high-performance GFDM systems under fading channel conditions.

Originality/value

Theoretical support to simulated system performance.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Sai Krishna Kondoju and V.V. Mani

This paper aims to the increasing need for high-speed low-power data transmissions over frequency-selective fading channels has drawn attention to suggest dual-carrier modulation…

Abstract

Purpose

This paper aims to the increasing need for high-speed low-power data transmissions over frequency-selective fading channels has drawn attention to suggest dual-carrier modulation (DCM) for multiband orthogonal frequency division multiplexing (OFDM) transceivers for ultra wideband (UWB) wireless personal area network (WPAN).

Design/methodology/approach

Under frequency-selective fading channel conditions, the decoder is not sufficient enough to decode the transmission bits of severely attenuated data tones. Hence, the authors suggest DCM for a multiband OFDM transceiver because of its multiple capability of providing both frequency diversity and coding gain. It also resulted in low bit-error-rate (BER) at a given signal- to-noise ratio when compared to conventional multiband OFDM system. To achieve an optimised BER, DCM transforms four re-ordered bits into two quaternary phase shift keying symbols and further transforms to two 16-quadrature amplitude modulation-like (16-QAM) symbols with a suitable mapping technique, and at the receiver end, they are decoded with maximum likelihood decision rule. After performing the transformation, the outage probability and average BER expressions are derived to analyse the system performance.

Findings

DCM is suitable for high data rate transmission and is immune to frequency-selective fading. The outage and BER performance outstands over conventional multiband OFDM transceiver because of the inclusion of DCM mapping.

Practical implications

It is widely used in WPANs such as high definition multimedia interface and wireless universal serial bus.

Originality/value

This paper derives novel closed-form outage probability and a tight upper bound on average BER expressions for DCM-based multiband OFDM UWB transceiver over frequency-selective Nakagami-m fading channels for any arbitrary value of m. For this, moment-generating function of sum of squared, independent and identically distributed (i.i.d.) Nakagami-m random variables are used. Further, the system performance is also validated for the case of exponential decaying power delay profile, and the simulation results are provided to check the accuracy of the derived expressions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Khaled Abdulaziz Alaghbari, Lim Heng Siong and Alan W.C. Tan

The purpose of this paper is to propose a robust correntropy assisted blind channel estimator for multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO…

Abstract

Purpose

The purpose of this paper is to propose a robust correntropy assisted blind channel estimator for multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) for improved channel gains estimation and channel ordering and sign ambiguities resolution in non-Gaussian noise channel.

Design/methodology/approach

The correntropy independent component analysis with L1-norm cost function is used for blind channel estimation. Then a correntropy-based method is formulated to resolve the sign and order ambiguities of the channel estimates.

Findings

Simulation study on Gaussian noise scenario shows that the proposed method achieves almost the same performance as the conventional L2-norm based method. However, in non-Gaussian noise scenarios performance of the proposed method significantly outperforms the conventional and other popular estimators in terms of mean square error (MSE). To solve the ordering and sign ambiguities problems, an auto-correntropy-based method is proposed and compared with the extended cross-correlation-based method. Simulation study shows improved performance of the proposed method in terms of MSE.

Originality/value

This paper presents for the first time, a correntropy-based blind channel estimator for MIMO-OFDM as well as simulated comparison results with traditional correlation-based methods in non-Gaussian noise environment.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 October 2021

Y.K. Shobha and H.G. Rangaraju

The suggested work examines the latest developments such as the techniques employed for allocation of power, browser techniques, modern analysis and bandwidth efficiency of…

Abstract

Purpose

The suggested work examines the latest developments such as the techniques employed for allocation of power, browser techniques, modern analysis and bandwidth efficiency of nonorthogonal multiple accesses (NOMA) in the network of 5G. Furthermore, the proposed work also illustrates the performance of NOMA when it is combined with various techniques of wireless communication namely network coding, multiple-input multiple-output (MIMO), space-time coding, collective communications, as well as many more. In the case of the MIMO system, the proposed research work specifically deals with a less complex recursive linear minimum mean square error (LMMSE) multiuser detector along with NOMA (MIMO-NOMA); here the multiple-antenna base station (BS) and multiple single-antenna users interact with each other instantaneously. Although LMMSE is a linear detector with a low intricacy, it performs poorly in multiuser identification because of the incompatibility between LMMSE identification and multiuser decoding. Thus, to obtain a desirable iterative identification rate, the proposed research work presents matching constraints among the decoders and identifiers of MIMO-NOMA.

Design/methodology/approach

To improve the performance in 5G technologies as well as in cellular communication, the NOMA technique is employed and contemplated as one of the best methodologies for accessing radio. The above-stated technique offers several advantages such as enhanced spectrum performance in contrast to the high-capacity orthogonal multiple access (OMA) approach that is also known as orthogonal frequency division multiple access (OFDMA). Code and power domain are some of the categories of the NOMA technique. The suggested research work mainly concentrates on the technique of NOMA, which is based on the power domain. This approach correspondingly makes use of superposition coding (SC) as well as successive interference cancellation (SIC) at source and recipient. For the fifth-generation applications, the network-level, as well as user-experienced data rate prerequisites, are successfully illustrated by various researchers.

Findings

The suggested combined methodology such as MIMO-NOMA demonstrates a synchronized iterative LMMSE system that can accomplish the optimized efficiency of symmetric MIMO NOMA with several users. To transmit the information from sender to the receiver, hybrid methodologies are confined to 2 × 2 as well as 4 × 4 antenna arrays, and thereby parameters such as PAPR, BER, SNR are analyzed and efficiency for various modulation strategies such as BPSK and QAMj (j should vary from 8,16,32,64) are computed.

Originality/value

The proposed hybrid MIMO-NOMA methodologies are synchronized in terms of iterative process for optimization of LMMSE that can accomplish the optimized efficiency of symmetric for several users under different noisy conditions. From the obtained simulated results, it is found, there are 18%, 23% 16%, and 8% improvement in terms of Bit Error Rate (BER), Least Minimum Mean Squared Error (LMMSE), Peak to Average Power Ratio (PAPR), and capacity of channel respectively for Binary Phase Shift Key (BPSK) and Quadrature Amplitude Modulation (QAM) modulation techniques.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 25 June 2021

Gangadhar Ch, Nama Ajay Nagendra, Syed Mutahar Aaqib, C.M. Sulaikha, Shaheena Kv and Karanam Santoshachandra Rao

COVID-19 would have a far-reaching impact on the international health-care industry and the patients. For COVID-19, there is a need for unique screening tests to reliably and…

Abstract

Purpose

COVID-19 would have a far-reaching impact on the international health-care industry and the patients. For COVID-19, there is a need for unique screening tests to reliably and rapidly determine who is infected. Medical COVID images protection is critical when data pertaining to computer images are being transmitted through public networks in health information systems.

Design/methodology/approach

Medical images such as computed tomography (CT) play key role in the diagnosis of COVID-19 patients. Neural networks-based methods are designed to detect COVID patients using chest CT scan images. And CT images are transmitted securely in health information systems.

Findings

The authors hereby examine neural networks-based COVID diagnosis methods using chest CT scan images and secure transmission of CT images for health information systems. For screening patients infected with COVID-19, a new approach using convolutional neural networks is proposed, and its output is simulated.

Originality/value

The required patient’s chest CT scan images have been taken from online databases such as GitHub. The experiments show that neural networks-based methods are effective in the diagnosis of COVID-19 patients using chest CT scan images.

Details

World Journal of Engineering, vol. 19 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 82