Search results

1 – 10 of 15
Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2023

A.K. Abdul Hakeem, Priya S., Ganga Bhose and Sivasankaran Sivanandam

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent…

Abstract

Purpose

The purpose of this study is to provide that porous media and viscous dissipation are crucial considerations when working with hybrid nanofluids in various applications.Recent years have witnessed significant progress in optimizing these fluids for enhanced heat transfer within porous (Darcy–Forchheimer) structures, offering promising solutions for various industries seeking improved thermalmanagement and energy efficiency.

Design/methodology/approach

The first step is to transform the original partial differential equations into a system of first-order ordinary differential equations (ODEs). The fourth-order Runge–Kutta method is chosen for its accuracy in solving ODEs. The present study investigates the free convective boundary layer flow of hybrid nanofluids over a moving thin inclined needle with the slip flow brought about by inclined Lorentz force and Darcy–Forchheimer porous matrix, viscous dissipation.

Findings

It is found that slip conditions (velocity and Thermal) exist for a range of the natural convection boundary layer flow. In the hybrid nanofluid flow, which consists of Al2O3 and Fe3O4 are nanoparticles, H2OC2H6O2 (50:50) are considered as the base fluid. The consequence of the governing parameter on the momentum and temperature profile distribution is graphically depicted. The range of the variables is 1 ≤ M ≤ 4, 1 ≤ d ≤ 2.5, 1 ≤ δ ≤ 4, 1 ≤ Fr ≤ 7, 1 ≤ Kr ≤ 7 and 0.5≤λ ≤ 3.5. The Nusselt number and skin friction factors are used to calculate the numerical values of various parameters, which are displayed in Table 4. These analyses elucidate that upsurges in the value of the Fr noticeably diminish the momentum and temperature. It is investigated to see if the contemporary results are in outstanding promise with the outcomes reported in earlier works.

Practical implications

The results can be very helpful to improve the energy efficiency of thermal systems.

Social implications

The hybrid nanofluids in heat transfer have the potential to improve the energy efficiency and performance of a wide range of systems.

Originality/value

This study proposes that in the combined effects of hybrid nanofluid properties, the inclined Lorentz force, the Darcy–Forchheimer model for porous media and viscous dissipation on the boundary layer flow of a conducting fluid over a moving thin inclined needle. Assessing the potential practical applications of the hybrid nanofluids in inclined needles, this could involve areas such as biomedical engineering, drug delivery systems or microfluidic devices. In future should explore the benefits and limitations of using hybrid nanofluids in these applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 January 2024

F.D. Ayegbusi and A.S. Idowu

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of…

Abstract

Purpose

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of non-Newtonian nanofluid flows between two porous parallel plates in the presence of Lorentz force are taken into account in this research.

Design/methodology/approach

The governing partial differential equations (PDEs) were nondimensionalized using suitable nondimensional quantities to transform the PDEs into a system of coupled nonlinear PDEs. The resulting equations are solved using the spectral relaxation method due to the effectiveness and accuracy of the method. The obtained velocity and temperature profiles are used to compute the entropy generation rate and Bejan number. The influence of various flow parameters on the velocity, temperature, entropy generation rate and Bejan number are discussed graphically.

Findings

The results indicate that the energy losses can be minimized in the system by choosing appropriate values for pertinent parameters; when thermal conductivity is increasing, this leads to the depreciation of entropy generation, and while this increment in thermal conductivity appreciates the Bejan number, the Eckert number on entropy generation and Bejan number, the graph shows that each time of increase in Eckert will lead to rising of entropy generation while this increase shows a reduction in Bejan number. To shed more light, these results were further demonstrated graphically. The current research was very well supported by prior literature works.

Originality/value

All results are presented graphically, and the results in this article are anticipated to be helpful in the area of engineering.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2024

Ahmed Jan, Muhammad F. Afzaal, Muhammad Mushtaq, Umer Farooq and Muzammil Hussain

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Abstract

Purpose

This study investigates the flow and heat transfer in a magnetohydrodynamic (MHD) ternary hybrid nanofluid (HNF), considering the effects of viscous dissipation and radiation.

Design/methodology/approach

The transport equations are transformed into nondimensional partial differential equations. The local nonsimilarity (LNS) technique is implemented to truncate nonsimilar dimensionless system. The LNS truncated equation can be treated as ordinary differential equations. The numerical results of the equation are accomplished through the implementation of the bvp4c solver, which leverages the fourth-order three-stage Lobatto IIIa formula as a finite difference scheme.

Findings

The findings of a comparative investigation carried out under diverse physical limitations demonstrate that ternary HNFs exhibit remarkably elevated thermal efficiency in contrast to conventional nanofluids.

Originality/value

The LNS approach (Mahesh et al., 2023; Khan et al., 20223; Farooq et al., 2023) that we have proposed is not currently being used to clarify the dynamical issue of HNF via porous media. The LNS method, in conjunction with the bvp4c up to its second truncation level, yields numerical solutions to nonlinear-coupled PDEs. Relevant results of the topic at hand, obtained by adjusting the appropriate parameters, are explained and shown visually via tables and diagrams.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 February 2024

Umer Farooq, Amara Bibi, Javeria Nawaz Abbasi, Ahmed Jan and Muzamil Hussain

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon…

Abstract

Purpose

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon dioxide (SiO2) and titanium dioxide (TiO2) are regarded as nanoparticles, with water serving as the base fluid. The mathematical model incorporates momentum boundary layer and energy equations. The Grinberg term for the viscous dissipation and the wall parallel Lorentz force coming from the Riga plate are taken into consideration in the context of the energy equation.

Design/methodology/approach

Through the use of appropriate nonsimilar transformations, the governing system is transformed into nonlinear nondimensional partial differential equations (PDEs). The numerical method bvp4c (built-in package for MATLAB) is used in this study to simulate governing equations using the local non-similarity (LNS) approach up to the second truncation level.

Findings

Numerous graphs and numerical tables expound on the physical properties of the nanofluid temperature and velocity profiles. The local Nusselt correlations and the drag coefficient for pertinent parameters have been computed in tabular form. Additionally, the temperature profile drops while the velocity profile increases when the mixed convection parameter is included to oppose the flow.

Originality/value

The fundamental goal of this work is to comprehend how ternary nanofluids move towards a vertical Riga plate in a mixed convective domain with stagnation point flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 July 2023

Sara I. Abdelsalam, A. Magesh, P. Tamizharasi and A.Z. Zaher

The purpose of this paper is to investigate the behavior of a non-Newtonian nanofluid caused by peristaltic waves along an asymmetric channel. Additionally considered is the…

Abstract

Purpose

The purpose of this paper is to investigate the behavior of a non-Newtonian nanofluid caused by peristaltic waves along an asymmetric channel. Additionally considered is the production of thermal radiation and activation energy.

Design/methodology/approach

The equations of momentum, mass and temperature of Sutterby nanofluids are obtained for long wavelength. By taking into account the velocity, temperature and concentration, the formulation is further finished.

Findings

Analyses of the physical variables influencing flow features are represented graphically. The present investigation shows that an enhancement in the temperature ratio parameter results in an increase in both the temperature and concentration. The investigation also shows that the dimensionless reaction rate significantly raises the kinetic energy of the reactant, which permits more particle collisions and as a result, raises the temperature field.

Originality/value

Due to their importance in the treatment of cancer, activation energy and thermal radiation as a route of heat transfer are crucial and exciting phenomena for researchers. So, the cancer cells are killed, and tumors are reduced in size with heat and making hyperthermia therapy a cutting-edge cancer treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 March 2024

Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Abstract

Purpose

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Design/methodology/approach

In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.

Findings

The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.

Originality/value

The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 15