Search results

1 – 7 of 7
Article
Publication date: 1 August 2010

Amar Patnaik, Sachin Tejyan and Amit Rawal

The paper describes a series of preliminary experiments that are conducted to investigate the mechanical properties and erosive wear behavior of needlepunched nonwoven

Abstract

The paper describes a series of preliminary experiments that are conducted to investigate the mechanical properties and erosive wear behavior of needlepunched nonwoven polypropylene (PP) fibre reinforced epoxy based composites. The tests are conducted on an air jet erosion test rig and design of an experimental approach which utilizes Taguchi’s orthogonal arrays is adopted for an analysis of the results. The findings of the experiments indicate that fiber content in needlepunched nonwovens, impingement angle and impact velocity are significant factors in descending importance with regard to their influence on the wear rate. It is confirmed from a steady state erosion study that PP fiber reinforced epoxy nonwoven composites mostly exhibit a semi-ductile erosion response. An optimal parameter combination has been determined for minimization of erosive wear rate. Analysis of variance (ANOVA) and S/N (signal-to-noise) ratios have been performed on the measured data. The results of Taguchi’s experimental design are proposed as empirical equations for the estimation of the erosion wear rate of these composites. It is demonstrated that the predicted results obtained using the empirical model are consistent with experimental observations.

Details

Research Journal of Textile and Apparel, vol. 14 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 May 2015

Jamshid Jamshidi

The use of geotextile sand containers (GSCs) in shoreline protection systems has moderately grown since the first applications in the 1970s and increasingly used as an alternative…

Abstract

The use of geotextile sand containers (GSCs) in shoreline protection systems has moderately grown since the first applications in the 1970s and increasingly used as an alternative to natural stone, slag, and concrete. Due to their economical, technical and ecological advantages, the use of geotextiles and geocomposites for filter and drainage functions is increasing worldwide and has a 40 year history already. For coastal protection measures, nonwovens are proven to have long-term resistance against ultraviolet radiation and saltwater. High elongation behavior provides superior properties during loading in coastal protection means, which is determined as being the biggest risk for damaging geotextiles. Such applications require certain functional characteristics in the geotextiles, besides their basic properties, which are required to be engineered by the judicious optimization of the needlepunching process. In this study, the effect of the process parameters including punch density and depth of needle penetration has been investigated on the mechanical (tensile strengths in the machine and cross-machine directions) properties of needlepunched nonwoven geotextiles. These process parameters are then empirically related to the fabric properties by using a multiple regression technique.

Details

Research Journal of Textile and Apparel, vol. 19 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 May 2013

Paul Sawhney, Chuck Allen, Michael Reynolds, Ryan Slopek and Brian Condon

The aim of this research is to develop greige (raw/non-bleached) cotton-containing nonwoven fabrics that likely would be competitive in quality, cost and performance to existing…

Abstract

The aim of this research is to develop greige (raw/non-bleached) cotton-containing nonwoven fabrics that likely would be competitive in quality, cost and performance to existing products that presently and predominantly use man-made fibers and some bleached cotton for wipes and other similar end-use nonwoven products. Since the whiteness and absorbency of these end-use products generally are the most desired and perhaps even critical attributes, the research was mainly focused on attaining these attributes by exploring various choices and optimum use of a variety of cost-effective cotton fibers and the blends thereof with other fibers. Nonwoven fabrics were produced, via a modern hydroentanglement system, with possible choices of using several types of cotton fibers, including the greige cotton lint and certain of its co-products such as gin motes and comber noils, and their various blends with polyester and nylon staple fibers. Bleached cotton was also used to produce an equivalent fabric for comparison. The research has shown that although the desired and perhaps critical properties of whiteness and absorbency of the selected fibers vary considerably among the various fabrics produced, the blends of greige cotton lint with man-made fibers can provide the fabric whiteness and absorbency comparable to those of say, a, bleached cotton fabric. The research results suggest that the greige cotton lint and/or its co-products in blend with polyester fiber may be sensible approaches to the development of functionally acceptable nonwoven wiping products that are also environment friendly.

Details

World Journal of Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 February 2009

Maja Radetic, Darinka Radojevic, Vesna Ilic, Darka Mihailovic and Petar Jovancic

The purpose of this paper is to investigate the possible application of recycled wool‐based nonwoven material (RWNM) for removal of different dyes that are used in textile dye…

409

Abstract

Purpose

The purpose of this paper is to investigate the possible application of recycled wool‐based nonwoven material (RWNM) for removal of different dyes that are used in textile dye houses.

Design/methodology/approach

The sorption kinetics, the influence of initial dye concentration, pH and temperature are analyzed. Basic, reactive, direct and metal complex dyes are studied.

Findings

The sorption properties are highly influenced by the type of the dye owing to differences in their chemical structure and thus, the mechanism of binding to wool. Modification of material with chitosan and hydrogen peroxide improves the sorption capacities and sorption rates but no general trend can be established. Consequently, the sorption behaviour is analyzed separately for each type of the dye.

Originality/value

The results indicate that RWNM can be used as an efficient, low‐cost sorbent for decolorisation of effluents.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 August 2011

Umit Halis Erdogan and Nilufer Erdem

The purpose of this paper is to propose a theoretical model to predict the mechanical behaviour of needle punched heavy geotextiles in uniaxial tensile test.

Abstract

Purpose

The purpose of this paper is to propose a theoretical model to predict the mechanical behaviour of needle punched heavy geotextiles in uniaxial tensile test.

Design/methodology/approach

The model was constructed using theory of layered composite materials and finite element method. The properties of a reference fabric were used as initial data in theoretical calculations and a commercially available finite element program was chosen to carry out stress analysis. A comparison is made between theoretical calculations and experimental data to evaluate the deformation mechanism of geotextile fabrics in uniaxial tensile test.

Findings

The results indicate that compatible data were predicted in terms of stress values and stress distribution of fabrics. The inconstant lateral contraction of nonwoven fabrics in tensile test is also successfully simulated by the model. However, in the case of elongations, the model could not predict the strains of heavy geotextiles accurately.

Originality/value

The study aims at predicting the mechanical behaviour of needle punched heavy geotextiles by using the structural and mechanical properties of a “reference fabric” instead of constituent fiber properties.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2003

George K. Stylios

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

1197

Abstract

Examines the ninth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 15 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 7 of 7