Search results

1 – 10 of 248
Article
Publication date: 28 November 2022

Giovanni Anggasta, Iwan Halim Sahputra and Debora Anne Yang Aysia

The objective of this research is to systematically compare two methods of wicking test for evaluating the quality of the non-medical-mask fabric, i.e. its absorbency property at…

Abstract

Purpose

The objective of this research is to systematically compare two methods of wicking test for evaluating the quality of the non-medical-mask fabric, i.e. its absorbency property at various conditions, using a design of experiment approach. This research also evaluates the suitability of several fabrics to be used for non-medical masks.

Design/methodology/approach

Horizontal and vertical wicking tests were selected to evaluate the absorbency property of five fabrics commonly used for the non-medical mask. The tests were performed at three temperatures and using two types of liquid. The design of experiment approach was employed to determine the relationship between the path length of liquid movement in fabric and type of test method, temperature and type of liquid.

Findings

Both vertical and horizontal wicking tests show the same order of fabrics according to their absorbency. The order is cotton twill, local cotton, Japanese cotton, Oxford and Scuba, where the first in the order has the lowest absorbency and the last has the highest absorbency. Based on the analysis of variance (ANOVA), the range of temperature and types of liquid employed in this research do not affect the path length of the liquid movement in the fabric.

Originality/value

This research proposes horizontal and vertical wicking tests as a practical tool to evaluate absorbency property of fabric for the non-medical mask. This research also presents a design of experiment approach to evaluate the effect of the test method, temperature and type of liquid on the path length of the liquid movement in the fabric.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2014

B.K. Behera and J.P. Singh

The objective of this research paper is to investigate the important factors that contribute to the absorbency characteristics of terry fabric in order to produce highly absorbent…

Abstract

The objective of this research paper is to investigate the important factors that contribute to the absorbency characteristics of terry fabric in order to produce highly absorbent terry towels by using suitable raw materials and changing the fabric constructional parameters. Yarns produced from two varieties of cotton (100% J-34 and MCU-5) and their blends with bamboo and poly vinyl alcohol (PVA) with different counts, twist and number of plies are used to prepare terry fabric of varying loop densities, loop lengths and loop shape factors. The water absorption rate and the total amount of water absorbed are measured by a gravimetric absorbency testing system (GATS). It is found that loop density is the most important parameter for water absorption rate followed by loop length and yarn twist. For the total amount of water absorbed, loop density is again the most important parameter followed by yarn twist, loop shape factor and number of ply in the pile yarn. Furthermore, a Box-Behnken statistical design with 3 factors and 3 levels is used to determine the optimum construction parameters to obtain the desired absorbency characteristics of terry towels and also to see the interaction effect of the various factors.

Details

Research Journal of Textile and Apparel, vol. 18 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 November 2018

R. Rathinamoorthy

The utilisation of softener after laundering of textile became one of the mandatory activities among the consumers. Hence, the purpose of this paper is to determine the influence…

Abstract

Purpose

The utilisation of softener after laundering of textile became one of the mandatory activities among the consumers. Hence, the purpose of this paper is to determine the influence of repeated rinse cycle softener treatment on the comfort characteristics of cotton and polyester woven fabric.

Design/methodology/approach

The selected cotton and polyester fabrics were treated using three different softeners types and three different numbers of rinsing times, namely 5, 10 and 15. The impact of repeated rinse cycle softener treatment on the comfort characteristics like absorbency, air permeability, wicking, thermal conductivity and flammability was analysed and the changes in the properties were confirmed using two-way ANOVA.

Findings

The number of rinse cycle softener treatment has a significant impact on the absorbency, air permeability and wicking ability of the cotton and polyester fabrics. The thermal conductivity and flammability characteristics of the fabrics mostly altered based on the type of fabric softener used. For all the type of fabric, the burning time reduced after the softener treatment.

Social implications

The consumer expects the softness and fragrance smell developed by the rinse cycle softener and they intend to use it more frequently after every laundry process to achieve that feel. This repeated the application of softener causes a negative impact on the fabric performances. This research result provides an evidence for the changes in physiological comfort aspects of textiles.

Originality/value

This analysis enlightens the negative impact of the repeated use of commercial fabric softener and their types on the common fabrics used in apparel endues.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 May 2013

Paul Sawhney, Chuck Allen, Michael Reynolds, Ryan Slopek and Brian Condon

The aim of this research is to develop greige (raw/non-bleached) cotton-containing nonwoven fabrics that likely would be competitive in quality, cost and performance to existing…

Abstract

The aim of this research is to develop greige (raw/non-bleached) cotton-containing nonwoven fabrics that likely would be competitive in quality, cost and performance to existing products that presently and predominantly use man-made fibers and some bleached cotton for wipes and other similar end-use nonwoven products. Since the whiteness and absorbency of these end-use products generally are the most desired and perhaps even critical attributes, the research was mainly focused on attaining these attributes by exploring various choices and optimum use of a variety of cost-effective cotton fibers and the blends thereof with other fibers. Nonwoven fabrics were produced, via a modern hydroentanglement system, with possible choices of using several types of cotton fibers, including the greige cotton lint and certain of its co-products such as gin motes and comber noils, and their various blends with polyester and nylon staple fibers. Bleached cotton was also used to produce an equivalent fabric for comparison. The research has shown that although the desired and perhaps critical properties of whiteness and absorbency of the selected fibers vary considerably among the various fabrics produced, the blends of greige cotton lint with man-made fibers can provide the fabric whiteness and absorbency comparable to those of say, a, bleached cotton fabric. The research results suggest that the greige cotton lint and/or its co-products in blend with polyester fiber may be sensible approaches to the development of functionally acceptable nonwoven wiping products that are also environment friendly.

Details

World Journal of Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 August 2018

Varadaraju Ramakrishnan and Srinivasan Jagannathan

The purpose of this paper is to optimize the linear densities of polyester yarn and filament for inner layer and elastane for middle layer with cotton yarn outer layer in plain…

Abstract

Purpose

The purpose of this paper is to optimize the linear densities of polyester yarn and filament for inner layer and elastane for middle layer with cotton yarn outer layer in plain knitted plated structure for hot and dry environment clothing.

Design/methodology/approach

Three levels of polyester yarn linear densities (11.1, 8.4 and 5.6 Tex), filament linear densities (0.8, 1.55 and 2.3 Decitex) and elastane (0, 4 and 8 percent) with 14.75 Tex cotton yarn have been used to knit 15 single jersey plated fabrics based on Box and Benhens experimental design with same loop length. Three cotton–elastane core-spun fabrics were also produced. All the fabrics were analyzed for moisture and ergonomic comfort properties and wet fabric coefficient of friction.

Findings

The increase in elastane content and yarn linear density decreases water vapor and air permeability; the increase in filament linear density decreases wicking rate and water absorbency. The optimum solution is 5.55 Tex polyester yarn of 0.8 Decitex filament as inner layer and 14.75 Tex cotton yarn as outer layer which gives good heat and moisture transfer without stickiness.

Research limitations/implications

The implication of this paper is to study thinner polyester, polypropylene and polyethylene fabrics with more micro pores as skin contact layer for quicker heat and moisture transfer.

Practical implications

Outward wickability of sweat from the skin is the prime requirement of all skin contact layer fabrics.

Social implications

It shifts the social attitude of most comfortable fabric to polyester–cotton plated for hot and dry climate.

Originality/value

This paper employs a more practical method for the selection of fabric.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 2023

Khaled Mohamed Seddik, Lamiaa Khamal El-Gabry and Marwa Atif Ali

This study aims to use hexanediol, pentaerythritol and keratin as crosslinking agents on the acrylic fabric used as garments.

Abstract

Purpose

This study aims to use hexanediol, pentaerythritol and keratin as crosslinking agents on the acrylic fabric used as garments.

Design/methodology/approach

Plain 1/1 acrylic fabric was produced with 14 and 11 weft yarn/cm using yarn count 28/2 Ne, then it was modified with different agents, and the effect of crosslinking on some of the inherent properties was determined. The color strength as well as washing fastness was evaluated. The Fourier transform infrared spectroscopy determined the changes that acted in the structure of the treated acrylic fabrics. Several physical and functional utility characteristics were studied such as stiffness, crease recovery, tensile strength and elongation, pilling, air permeability, absorbency and static electricity.

Findings

Polyacrylonitrile is one of the man-made materials used in the textile field; despite novel characteristics, it has some negative properties, especially in absorbency and pilling, which are improved after treatment.

Originality/value

The results presented that the different conditions that were used with cross-linkers enhanced the acrylic fabrics properties. Where analysis of variance test at P-value 0.05 and radar chart area offered that the treated acrylic fabric with 5% (w/v) keratin accomplished the highest preferable properties for end use.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 September 2018

Çağlar Sivri

The purpose of this paper is to introduce a novel face mask prototype having a superabsorbent nanofibrous coating with a homogenous distribution.

Abstract

Purpose

The purpose of this paper is to introduce a novel face mask prototype having a superabsorbent nanofibrous coating with a homogenous distribution.

Design/methodology/approach

Superabsorbent nanofibers were manufactured via electrospinning method using Poly(vinyl alcohol)/superabsorbent polymer (PVA/SAP) aqueous polymer solutions and they were simultaneously coated onto face masks in order to develop their virus protection and comfort properties. Absorbency, air permeability, Fourier Transform Infrared Spectroscopy (FT-IR) and SEM investigations were carried out for characterization.

Findings

SEM investigations revealed that face masks were homogenously coated with nanofibers. Picks obtained from FT-IR spectra proved that all mask samples have PVA/SAP content indicating their absorbent feature. Liquid absorption capacity and air permeability tests have shown that nanofiber coating increased the hydrophilicity of face masks while air permeability decreased in reverse. Final prototype has been found to be promising for industrial, scientific and medical applications with its improved protection and comfort characteristics.

Research limitations/implications

The implication of the research is to investigate the morphological, physical and transfer difference of face masks that are coated with nanofibers and uncoated face masks. This is useful in selection of the right face mask with optimum surface, absorbency and transfer properties.

Originality/value

Compared to commercial product in the market, the face mask developed within the study has a more regularly distributed nanofiber coating.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2013

M. Manshahia and A. Das

Liquid water transport is a critical factor that affects the physiological comfort of sportswear. In this study, active kinds of sportswear of different international brands are…

Abstract

Liquid water transport is a critical factor that affects the physiological comfort of sportswear. In this study, active kinds of sportswear of different international brands are studied and their liquid transport performances are evaluated. The fabric structure has been analysed by using a Leicamicroscope and the filament cross section has been analysed by using scanning electron microscopy. Vertical wicking against gravity is measured by using a vertical wicking tester. The in-plane flow of liquid is measured by using an in-plane gravimetric wicking tester. The liquid transport along the thickness is measured in terms of absorbency by using a gravimetric absorbency tester. It has been observed that the fabric structure, filament cross sectional shape and filament denier have substantial influence on liquid water transport.It is seen that with an increase in the fibre specific surface area, by changing the fibre shape factor and diameter, the wicking rate throughout the fabric increases.

Details

Research Journal of Textile and Apparel, vol. 17 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 May 2022

Dat Van Truong, Song Thanh Quynh Le and Huong Mai Bui

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to…

Abstract

Purpose

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to demonstrate the process of creating an oil-absorbent web from a blend of treated kapok and polypropylene fibers.

Design/methodology/approach

Kapok fibers were separated from dried fruits, then the wax was removed with an HCl solution at different concentrations. The morphological and structural changes of these fibers were investigated using scanning electron microscopy images. The blending ratios of kapok and polypropylene fibers were 60/40, 70/30 and 80/20, respectively. The fiber blends were fed to a laboratory carding machine to form a web and then consolidated using the heat press technique. The absorption behavior of the formed web was evaluated regarding oil absorption capacity and oil retention capacity according to ASTM 726.

Findings

The results showed that the HCl concentration of 1.0% (wt%) gave the highest wax removal efficiency without damaging the kapok fibers. This study found that oil absorbency is influenced by the fiber blending ratio, web tensile strength and elongation, porosity, oil type and environmental conditions. The oil-absorbency of the web can be re-used for at least 20 cycles.

Research limitations/implications

This study only looked at three types of oils: diesel, kerosene and vegetable oils.

Practical implications

When the problem of oil spills in rivers and seas is growing and causing serious environmental and economic consequences, using physical methods to recover oil spills is the most effective solution.

Originality/value

This research adds to the possibility of using kapok fiber in the form of a web of non-woven fabric for practical purposes.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 5 October 2020

Doaa Samir Mahmoud, Medhat Lotfy Tawfic, Abdel Gawad Rabie and Salwa H. El-Sabbagh

The purpose of this paper is to prepare superabsorbent polymers (SAPs) based on acrylic acid, which is considered hygroscopic material to incorporate in rubber formulation, which…

Abstract

Purpose

The purpose of this paper is to prepare superabsorbent polymers (SAPs) based on acrylic acid, which is considered hygroscopic material to incorporate in rubber formulation, which results in producing moisten rubber that is used as roofing sheets.

Design/methodology/approach

SAPs were synthesized via free radical bulk polymerization technique using different content of cross-linker N, N'-methylenebisacrylamide and potassium persulfate. Differential scanning calorimeter, thermal gravimetric analysis, Fourier transform infrared spectroscopy and transmission electron microscopy were used to characterize SAPs and confirmed the formation of cross-linked hydrogel structure. The water absorbency and the gel fraction for sodium polyacrylate (NaPA) were investigated. Then, the influence of obtained NaPA on the swelling behavior of the prepared natural rubber (NR) compound has been discussed.

Findings

Absorption characteristics and gel fraction of NaPA were found to depend on the content of the cross-linker in the system. SAPs are used to improve the absorbance behavior and performance of the NR to produce, roofing sheets using in hot weather. The morphology of the obtained rubber compound was well-explained by using a scanning electron microscope.

Research limitations/implications

The research provides a simple way to produce moisten rubber that can be used as a roofing sheet to overcome warm weather.

Originality/value

Moisten rubber roofing sheets provide a low-cost option in many developing countries with hot climates, and thus, help save the environment from global warming.

Details

Pigment & Resin Technology, vol. 50 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 248