Search results

1 – 10 of 13
Article
Publication date: 9 January 2018

Fakhrozi Che Ani, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Roslina Ismail, Zuraihana Bachok, Mohamad Aizat Abas and Norinsan Kamil Othman

This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly.

Abstract

Purpose

This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly.

Design/methodology/approach

This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine.

Findings

The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards.

Practical implications

This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry.

Originality/value

The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.

Details

Soldering & Surface Mount Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 December 2018

Fakhrozi Che Ani, Azman Jalar, Abdullah Aziz Saad, Chu Yee Khor, Mohamad Aizat Abas, Zuraihana Bachok and Norinsan Kamil Othman

This study aims to investigate the NiO nano-reinforced solder joint characteristics of ultra-fine electronic package.

Abstract

Purpose

This study aims to investigate the NiO nano-reinforced solder joint characteristics of ultra-fine electronic package.

Design/methodology/approach

Lead-free Sn-Ag-Cu (SAC) solder paste was mixed with various percentages of NiO nanoparticles to prepare the new form of nano-reinforced solder paste. The solder paste was applied to assemble the ultra-fine capacitor using the reflow soldering process. A focussed ion beam, high resolution transmission electron microscopy system equipped with energy dispersive X-ray spectroscopy (EDS) was used in this study. In addition, X-ray inspection system, field emission scanning electron microscopy coupled with EDS, X-ray photoelectron spectroscopy (XPS) and nanoindenter were used to analyse the solder void, microstructure, hardness and fillet height of the solder joint.

Findings

The experimental results revealed that the highest fillet height was obtained with the content of 0.01 Wt.% of nano-reinforced NiO, which fulfilled the reliability requirements of the international IPC standard. However, the presence of the NiO in the lead-free solder paste only slightly influenced the changes of the intermetallic layer with the increment of weighted percentage. Moreover, the simulation method was applied to observe the distribution of NiO nanoparticles in the solder joint.

Originality/value

The findings are expected to provide a profound understanding of nano-reinforced solder joint’s characteristics of the ultra-fine package.

Details

Soldering & Surface Mount Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 September 2022

Hamed Al-sorory, Mohammed S. Gumaan and Rizk Mostafa Shalaby

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu…

Abstract

Purpose

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu (SAC355) solder alloys for high-performance applications.

Design/methodology/approach

The phase identification and morphology of the solders were studied using X-ray diffraction and scanning electron microscopy. Thermal parameters were investigated using differential scanning calorimetry. The elastic parameters such as Young's modulus (E) and internal friction (Q−1) were investigated using the dynamic resonance technique, whereas the Vickers hardness (Hv) and creep indentation (n) were examined using a Vickers microhardness tester.

Findings

Microstructural analysis revealed that ZnO nanoparticles (NPs) were distributed uniformly throughout the Sn matrix. Furthermore, addition of 0.1, 0.3 and 0.7 Wt.% of ZnO NPs to the eutectic (SAC355) prevented crystallite size reduction, which increased the strength of the solder alloy. Mechanical parameters such as Young's modulus improved significantly at 0.1, 0.3 and 0.7 Wt.% ZnO NP contents compared to the ZnO-free alloy. This variation can be understood by considering the plastic deformation. The Vickers hardness value (Hv) increased to its maximum as the ZnO NP content increased to 0.5. A stress exponent value (n) of approximately two in most composite solder alloys suggested that grain boundary sliding was the dominant mechanism in this system. The electrical resistance (ρ) increased its maximum value at 0.5 Wt.% ZnO NPs content. The addition of ZnO NPs to plain (SAC355) solder alloys increased the melting temperature (Tm) by a few degrees.

Originality/value

Development of eutectic (SAC355) lead-free solder doped with ZnO NPs use for electronic packaging.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 25 April 2022

Hamed Al-sorory, Mohammed S. Gumaan and Rizk Mostafa Shalaby

This study aims to investigate the effect of a small amount of TiO2 NPs addition on the microstructure, thermal, mechanical and electrical properties of environmentally friendly…

Abstract

Purpose

This study aims to investigate the effect of a small amount of TiO2 NPs addition on the microstructure, thermal, mechanical and electrical properties of environmentally friendly eutectic (SAC355)100-x(TiO2)x (x = 0.1, 0.3, 0.5, 0.7 and 1 wt.%) solder alloys.

Design/methodology/approach

Mechanical, thermal and electrical properties and microstructure conditions are taken into major consideration in any study of materials containing nanoparticles. Dynamic resonance technique, X-ray diffraction and scanning electron microscopy were carried out to study stiffness, identification of the phases and the morphology features of the solder. Structure and microstructure analysis indicated that the presence of rhombohedral β–Sn phase in addition to orthorhombic intermetallic compound (IMC) Ag3Sn and Cu3Sn phase dispersed in Sn matrix. In addition, the results showed that TiO2 NPs addition at a small trace amount into SAC355 system reduces and improves the particle size of both rhombohedral β–Sn and orthorhombic IMC Ag3Sn and Cu3Sn. The interstitial dispersion of TiO2 NPs at grain boundaries resulted in Ag3Sn being more uniform needle-like, which is distributed in the β–Sn matrix. The fine and uniform microstructure leads to improvement of mechanical strength.

Findings

Some important conclusions are summarized as follows: microstructure investigations revealed that the addition of TiO2 NPs particles to eutectic SAC355 inhibited in reducing and refines the crystallite size as well as the Ag3Sn IMC, which reinforced the strength of plain solder alloy. The mechanical properties values such as Young’s modulus and Vickers microhardness of SAC355 solder alloy can be significantly improved by adding a trace amount of TiO2 NPs compared with plain solder because of the existence of appropriate volume fraction of Ag3Sn IMC. The results show that the best creep resistance is obtained when the addition of 0.3 wt.% of TiO2 NPs is compared to plain solder. TiO2 NPs addition could increase the melting temperature, compared with plain solder. All results showed that TiO2 NPs addition is an effective method to enhance new solder joints.

Practical implications

New solder alloys.

Originality/value

Development of TiO2 NPs-doped eutectic SAC355 lead-free solder for electronic packaging.

Details

Soldering & Surface Mount Technology, vol. 35 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 May 2022

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Azman Jalar, Mohamad Riduwan Ramli and Fakhrozi Che Ani

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate…

Abstract

Purpose

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate solder joint quality by quantitatively analyzing the stencil printing-deposited solder volume, solder height and solder coverage area.

Design/methodology/approach

The dispensability of different solder paste types on printed circuit board (PCB) pads using different stencil aperture shapes was evaluated. Lead-free Type 4 (20–38 µm particle size) and Type 5 (15–25 µm particle size) solder pastes were used to create solder joints according to standard reflow soldering.

Findings

The results show that the stencil aperture shape greatly affects the solder joint quality as compared with the type of solder paste. These investigations allow the development of new strategies for solving solder paste stencil printing issues and evaluating the quality of solder joints.

Originality/value

The reflow soldering process requires the appropriate selection of the stencil aperture shape according to the PCB and the solder paste according to the particle-size distribution of the solder alloy powder. However, there are scarce studies on the effects of stencil aperture shape and the solder alloy particle size on the solder paste space-filling ability.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 8 July 2020

Norliza Ismail, Azman Jalar, Maria Abu Bakar, Nur Shafiqa Safee, Wan Yusmawati Wan Yusoff and Ariffin Ismail

The purpose of this paper is to investigate the effect of carbon nanotube (CNT) addition on microstructure, interfacial intermetallic compound (IMC) layer and micromechanical…

145

Abstract

Purpose

The purpose of this paper is to investigate the effect of carbon nanotube (CNT) addition on microstructure, interfacial intermetallic compound (IMC) layer and micromechanical properties of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint under blast wave condition. This work is an extension from the previous study of microstructural evolution and hardness properties of Sn-Ag-Cu (SAC) solder under blast wave condition.

Design/methodology/approach

SAC/CNT solder pastes were manufactured by mixing of SAC solder powder, fluxes and CNT with 0.02 and 0.04 by weight percentage (Wt.%) separately. This solder paste then printed on the printed circuit board (PCB) with the copper surface finish. Printed samples underwent reflow soldering to form the solder joint. Soldered samples then exposed to the open field air blast test with different weight charges of explosives. Microstructure, interfacial IMC layer and micromechanical behavior of SAC/CNT solder joints after blast test were observed and analyzed via optical microscope, field emission scanning microscope and nanoindentation.

Findings

Exposure to the blast wave induced the microstructure instability of SAC305/Cu and SAC/CNT/Cu solder joint. Interfacial IMC layer thickness and hardness properties increases with increase in explosive weight. The existence of CNT in the SAC305 solder system is increasing the resistance of solder joint to the blast wave.

Originality/value

Response of micromechanical properties of SAC305/CNT/Cu solder joint has been identified and provided a fundamental understanding of reliability solder joint, especially in extreme conditions such as for military applications.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 May 2019

Oliver Krammer, Péter Martinek, Balazs Illes and László Jakab

This paper aims to investigate the self-alignment of 0603 size (1.5 × 0.75 mm) chip resistors, which were soldered by infrared or vapour phase soldering. The results were used for…

Abstract

Purpose

This paper aims to investigate the self-alignment of 0603 size (1.5 × 0.75 mm) chip resistors, which were soldered by infrared or vapour phase soldering. The results were used for establishing an artificial neural network for predicting the component movement during the soldering.

Design/methodology/approach

The components were soldered onto an FR4 testboard, which was designed to facilitate the measuring of the position of the components both prior to and after the soldering. A semi-automatic placement machine misplaced the components intentionally, and the self-alignment ability was determined for soldering techniques of both infrared and vapour phase soldering. An artificial neural network-based prediction method was established, which is able to predict the position of chip resistors after soldering as a function of component misplacement prior to soldering.

Findings

The results showed that the component can self-align from farer distances by using vapour phase method, even from relative misplacement of 50 per cent parallel to the shorter side of the component. Components can self-align from a relative misplacement only of 30 per cent by using infrared soldering method. The established artificial neural network can predict the component self-alignment with an approximately 10-20 per cent mean absolute error.

Originality/value

It was proven that the vapour phase soldering method is more stable from the component’s self-alignment point of view. Furthermore, machine learning-based predictors can be applied in the field of reflow soldering technology, and artificial neural networks can predict the component self-alignment with an appropriately low error.

Details

Soldering & Surface Mount Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 February 2022

Agata Skwarek, Przemysław Piotr Ptak, Krzysztof Górecki, Krzysztof Witek and Balázs Illés

This paper aims to present the results of investigations that show the influence of ZnO composite soldering paste on the optical and thermal parameters of power light-emitting…

Abstract

Purpose

This paper aims to present the results of investigations that show the influence of ZnO composite soldering paste on the optical and thermal parameters of power light-emitting diodes (LEDs).

Design/methodology/approach

ZnO nanocomposite solder alloys were produced via the ball milling process from the solder paste Sn99Ag0.3Cu0.7 (SACX0307) and 1.0 wt% of ZnO nanoparticle reinforcements with different primary particle sizes (200 nm, 100 nm and 50 nm). Power LEDs were soldered onto a metal core printed circuit board. A self-designed LED test system was used to measure the thermal and optical characteristics of the LEDs.

Findings

The influence of the soldering paste on the thermal and optical parameters of LEDs was observed. In all solder alloys, ZnO ceramic reinforcement, at a level of 1 wt%, increased the thermal parameters of LEDs and decreased their luminous efficiency. Thermal resistance values were10% higher, and junction temperature change over ambient temperature was 20% higher for the samples soldered with composite solder pastes than the reference sample. At the same time, luminous efficiency dropped by 32%.

Originality/value

The results prove that ZnO ceramic reinforcement of solder paste influences the thermal properties of solder joints. As was proven, the quality of the solder joints influences the whole assembly.

Details

Soldering & Surface Mount Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 August 2020

Przemysław Ptak, Krzysztof Górecki, Agata Skwarek, Krzysztof Witek and Jacek Tarasiuk

This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs.

Abstract

Purpose

This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs.

Design/methodology/approach

The power LEDs were soldered onto metal core printed circuit board (MCPCB) substrates in different soldering ovens: batch and tunnel types, characterized by different thermal profiles. Three types of solder pastes based on Sn99Ag0.3Cu0.7 with the addition of TiO2 were used. The thermal and optical parameters of the diodes were measured using classical indirect electrical methods. The results of measurements obtained were compared and discussed.

Findings

It was shown that the type of oven and soldering thermal profile considerably influence the effectiveness of the removal of heat generated in the LEDs tested. This influence is characterized by thermal resistance changes. The differences between the values of this parameter can exceed 20%. This value also depends on the composition of the soldering paste. The differences between the diodes tested can exceed 15%. It was also shown that the luminous flux emitted by the diode depends on the soldering process used.

Practical implications

The results obtained could be useful for process design engineers for assembling power LEDs for MCPCBs and for designers of solid-state light sources.

Originality/value

This paper presents the results of investigations into the influence of the soldering profiles and soldering pastes used on the effectiveness of the removal of heat generated in power LEDs. It shows and discusses how the factors mentioned above influence the thermal resistance of the LEDs and optical parameters that characterize the light emitted.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 13