Search results

1 – 10 of 268
Article
Publication date: 28 August 2021

Zhao Wang, Yuefeng Li, Jun Zou, Bobo Yang and Mingming Shi

The purpose of this paper is to investigate the effect of different soldering temperatures on the performance of chip-on-board (COB) light sources during vacuum reflow soldering.

Abstract

Purpose

The purpose of this paper is to investigate the effect of different soldering temperatures on the performance of chip-on-board (COB) light sources during vacuum reflow soldering.

Design/methodology/approach

First, the influence of the void ratio of the COB light source on the steady-state voltage, luminous flux, luminous efficiency and junction temperature has been explored at soldering temperatures of 250°C, 260°C, 270°C, 280°C and 290°C. The COB chip has also been tested for practical application and aging.

Findings

The results show that when the soldering temperature is 270°C, the void ratio of the soldering layer is only 5.1%, the junction temperature of the chip is only 76.52°C, and the luminous flux and luminous efficiency are the highest, and it has been observed that the luminous efficiency and average junction temperature of the chip are 107 lm/W and 72.3°C, respectively, which meets the requirements of street lights. After aging for 1,080 h, the light attenuation is 84.64% of the initial value, which indicates that it has higher reliability and longer life.

Originality/value

It can provide reference data for readers and people in this field and can be directly applied to practical engineering.

Details

Soldering & Surface Mount Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 February 2022

Agata Skwarek, Przemysław Piotr Ptak, Krzysztof Górecki, Krzysztof Witek and Balázs Illés

This paper aims to present the results of investigations that show the influence of ZnO composite soldering paste on the optical and thermal parameters of power light-emitting…

Abstract

Purpose

This paper aims to present the results of investigations that show the influence of ZnO composite soldering paste on the optical and thermal parameters of power light-emitting diodes (LEDs).

Design/methodology/approach

ZnO nanocomposite solder alloys were produced via the ball milling process from the solder paste Sn99Ag0.3Cu0.7 (SACX0307) and 1.0 wt% of ZnO nanoparticle reinforcements with different primary particle sizes (200 nm, 100 nm and 50 nm). Power LEDs were soldered onto a metal core printed circuit board. A self-designed LED test system was used to measure the thermal and optical characteristics of the LEDs.

Findings

The influence of the soldering paste on the thermal and optical parameters of LEDs was observed. In all solder alloys, ZnO ceramic reinforcement, at a level of 1 wt%, increased the thermal parameters of LEDs and decreased their luminous efficiency. Thermal resistance values were10% higher, and junction temperature change over ambient temperature was 20% higher for the samples soldered with composite solder pastes than the reference sample. At the same time, luminous efficiency dropped by 32%.

Originality/value

The results prove that ZnO ceramic reinforcement of solder paste influences the thermal properties of solder joints. As was proven, the quality of the solder joints influences the whole assembly.

Details

Soldering & Surface Mount Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 1951

R.L Aspden

THE last decade has seen great progress in the development of the electronic flash tube and there are today few scientific or engineering projects which do not employ the tube as…

Abstract

THE last decade has seen great progress in the development of the electronic flash tube and there are today few scientific or engineering projects which do not employ the tube as a high‐speed photographic light source to secure data which cannot otherwise be obtained. Aeronautical research is no exception; the technique of flash photography was accelerated during the war years, both in this country and America, primarily to meet the many and varied problems which arise in aircraft engineering.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 28 December 2020

Muna Ezzi Raypah, Shahrom Mahmud, Mutharasu Devarajan and Anoud AlShammari

Optimization of light-emitting diodes’ (LEDs’) design together with long-term reliability is directly correlated with their photometric, electric and thermal characteristics. For…

Abstract

Purpose

Optimization of light-emitting diodes’ (LEDs’) design together with long-term reliability is directly correlated with their photometric, electric and thermal characteristics. For a given thermal layout of the LED system, the maximum luminous flux occurs at an optimal electrical input power and can be determined using a photo-electro-thermal (PET) theory. The purpose of this study is to extend the application of the luminous flux equation in PET theory for low-power (LP) LEDs.

Design/methodology/approach

LP surface-mounted device LEDs were mounted on substrates of different thermal resistances. Three LEDs were attached to substrates which were flame-retardant fiberglass epoxy (FR4) and two aluminum-based metal core printed circuit boards (MCPCBs) with thermal conductivities of about 1.0 W/m.K, 2.0 W/m.K and 5.0 W/m.K, respectively. The conjunction of thermal transient tester and thermal and radiometric characterization of LEDs system was used to measure the thermal and optical parameters of the LEDs at a certain range of input current and temperature.

Findings

The validation of the extended application of the luminous flux equation was confirmed via a good agreement between the practical and theoretical results. The outcomes show that the optimum luminous flux is 25.51, 31.91 and 37.01 lm for the LEDs on the FR4 and the two MCPCBs, respectively. Accordingly, the stipulated maximum electrical input power in the LED datasheet (0.185 W) is shifted to 0.6284, 0.6963 and 0.8838 W between the three substrates.

Originality/value

Using a large number of LP LEDs is preferred than high-power (HP) LEDs for the same system power to augment the heat transfer and provide a higher luminous flux. The PET theory equations have been applied to HP LEDs using heatsinks with various thermal resistances. In this work, the PET theory luminous flux equation was extended to be used for Indium Gallium Aluminum Phosphide LP LEDs attached to the substrates with dissimilar thermal resistances.

Article
Publication date: 6 April 2022

Emmanuel Imuetinyan Aghimien and Danny Hin Wa Li

Daylight plays a crucial role in the attainment of building energy savings. Harnessing daylight in building designs will require the need for daylight illuminance data. However…

68

Abstract

Purpose

Daylight plays a crucial role in the attainment of building energy savings. Harnessing daylight in building designs will require the need for daylight illuminance data. However, daylight illuminance data are scarce due to few measuring stations. Aside from being sparse, illuminance measuring stations can be expensive to set up, thus making the luminous efficacy model a better alternative. Hence, this study attempted to model horizontal luminous efficacies under the 15 Commission internationale de l'éclairage (CIE) standard skies. Therefrom, daylight illuminance was estimated from a proposed vertical luminous efficacy model.

Design/methodology/approach

Measured solar irradiance, daylight illuminance and luminance distribution data were gathered from the local measuring station in Hong Kong. The luminance distribution data were used to classify the skies into the 15 CIE standard skies. Next, the solar irradiance and daylight data were used to derive the horizontal luminous efficacies under each standard sky. Furthermore, a vertical luminous efficacy model developed using the measured data was described, and this was used to predict vertical illuminance.

Findings

It was observed that Skies 1, 8 and 13 seem to be predominant in Hong Kong. Also, the result showed that constant luminous efficacies could be used for deriving illuminance data. Furthermore, horizontal luminous efficacy ranged from 40 to 190lm/W, indicating that daylight can provide sufficient visibility during working hours. The vertical luminous efficacy model proves to offer reasonable estimations of vertical illuminance data.

Research limitations/implications

Further work needs to be done with more measured data to cover for spring seasons. The described model still needs to be fitted with different world climates to ascertain its universal applicability. The evaluations need to be done under obstructed sky conditions to cater for dense and clustered urban centres.

Practical implications

The discussed luminous efficacy model could be used to derive illuminance data in the absence of measured daylight illuminance data, especially in the subtropical region. Also, the comparative advantage of daylight over artificial lighting was highlighted in this study.

Originality/value

Unlike previous studies, this paper discusses the luminous efficacies of global, direct and diffuse components under the 15 CIE standard skies. Furthermore, the described luminous efficacy analysis provides an approach for deriving vertical and horizontal illuminance data. Such vertical data will be required for analysing building lighting requirements, sensible heat from electric lighting, and energy savings from daylighting controls. Also, the information on horizontal luminous efficacies will help evaluate solar roof and skylight designs.

Details

Smart and Sustainable Built Environment, vol. 11 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 January 2022

Krzysztof Górecki, Przemysław Ptak and Barbara Dziurdzia

This paper presents the results of the investigations of LED modules soldered with the use of different soldering pastes.

Abstract

Purpose

This paper presents the results of the investigations of LED modules soldered with the use of different soldering pastes.

Design/methodology/approach

The tested power LED modules are soldered using different solder pastes and soldering processes. Thermal parameters of the performed modules are tested using indirect electrical methods. The results of measurements obtained for different modules are compared and discussed.

Findings

It was shown that the soldering process visibly influences the results of measurements of optical and thermal parameters of LED modules. For example, values of thermal resistance of these modules and the efficiency of conversion of electrical energy into light differ between each other even by 15%.

Practical implications

The obtained results of investigations can be usable for designers of the assembly process of power LED modules.

Originality/value

This paper shows the investigations results in the area of effective assembly of power LEDs to the metal core printed circuit board (MCPCB) using different soldering pastes (REL22, REL61, LMPA-Q6, OM-5100, OM-338-PT, M8, OM-340, CVP-390). It was shown that the best thermal and optical properties of these modules are obtained for the OM5100 paste by Alpha Assembly.

Details

Soldering & Surface Mount Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 August 2014

Krzysztof Górecki

The purpose of this paper is to present a new method of measuring thermal resistance of power light-emitting diodes (LEDs). Properties of power LEDs strongly depend on their…

Abstract

Purpose

The purpose of this paper is to present a new method of measuring thermal resistance of power light-emitting diodes (LEDs). Properties of power LEDs strongly depend on their internal temperature. The value of this temperature depends on the cooling conditions characterized by thermal resistance.

Design/methodology/approach

The new method of measuring the value of this parameter belongs to the group of electric methods. In this method, the problem of estimating the value of electrical power converted into light is solved. By comparing the values of the case temperature obtained for the LED operating in the forward mode and the reverse-breakdown mode, the thermal power is estimated. On the basis of the measured value of the thermally sensitive parameter (the LED forward voltage) and the estimated value of the thermal power, thermal resistance is calculated.

Findings

The elaborated method was used to measure thermal resistance of the selected types of power LEDs operating at different cooling conditions. The correctness of the elaborated measurement method was proved by comparing the results of measurements obtained with the use of the new method and the infrared method.

Research limitations/implications

On the basis of the obtained results of measurements and the catalog data of the tested diodes, the dependence of the measurement error of thermal resistance of the LED on its luminous efficiency is discussed.

Originality/value

The new measurement method is easy to use and more accurate than the classical method of thermal resistance measurement of the diode.

Details

Microelectronics International, vol. 31 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 August 2020

Przemysław Ptak, Krzysztof Górecki, Agata Skwarek, Krzysztof Witek and Jacek Tarasiuk

This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs.

Abstract

Purpose

This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs.

Design/methodology/approach

The power LEDs were soldered onto metal core printed circuit board (MCPCB) substrates in different soldering ovens: batch and tunnel types, characterized by different thermal profiles. Three types of solder pastes based on Sn99Ag0.3Cu0.7 with the addition of TiO2 were used. The thermal and optical parameters of the diodes were measured using classical indirect electrical methods. The results of measurements obtained were compared and discussed.

Findings

It was shown that the type of oven and soldering thermal profile considerably influence the effectiveness of the removal of heat generated in the LEDs tested. This influence is characterized by thermal resistance changes. The differences between the values of this parameter can exceed 20%. This value also depends on the composition of the soldering paste. The differences between the diodes tested can exceed 15%. It was also shown that the luminous flux emitted by the diode depends on the soldering process used.

Practical implications

The results obtained could be useful for process design engineers for assembling power LEDs for MCPCBs and for designers of solid-state light sources.

Originality/value

This paper presents the results of investigations into the influence of the soldering profiles and soldering pastes used on the effectiveness of the removal of heat generated in power LEDs. It shows and discusses how the factors mentioned above influence the thermal resistance of the LEDs and optical parameters that characterize the light emitted.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 March 2017

Marco Beccali, Marina Bonomolo, Alessandra Galatioto and Emanuela Pulvirenti

The purpose of this paper is to address a project for lighting an old town in Italy. Its originality lies in the holistic approach that aims to fulfil several objectives. One is…

1079

Abstract

Purpose

The purpose of this paper is to address a project for lighting an old town in Italy. Its originality lies in the holistic approach that aims to fulfil several objectives. One is to reduce energy consumption by using efficient lamps and advanced control systems; the second one is to make the network viable and useful for many purposes by integrating ICT devices; the third one is to provide a new identity to the older part of the city by using new technologies and design concepts; while the last one is to ensure street and pedestrian safety according to codes and standards.

Design/methodology/approach

The plan of the city of Bagheria and the stock of luminaires of the city are analysed. A multidisciplinary approach has been adopted in order to: analyse the existing lighting infrastructure highlighting critical areas; design a new displacement and select typologies of luminaries able to provide proper light quality and distribution; propose an aesthetic solution and technical design for relevant historical building; and to include in the design process the concept of a new multifunctional pole. Together with an analysis of social benefits, an assessment of economic costs and benefits are discussed.

Findings

The project allows good energy savings, meets the standard requirements and gives a relevant and strategic improvement in social and environmental management of the city.

Originality/value

The work provides an example of integrated design of street lighting infrastructures for urban renovation in old cities in degraded environments.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 15 February 2022

Xinmeng Zhai, Yue Chen, Yuefeng Li, Jun Zou, Mingming Shi and Bobo Yang

This study aims to study the mechanical, photoelectric, and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip light-emitting diode (LED) package…

Abstract

Purpose

This study aims to study the mechanical, photoelectric, and thermal reliability of SAC307 solder joints with Ni-decorated MWCNTs for flip-chip light-emitting diode (LED) package component during aging. By adding nanoparticles (Ni-multi-walled carbon nanotubes [MWCNTs]) to the solder paste, the shear strength and fatigue resistance of the brazed joint can be improved. However, the aging properties of Ni-modified MWCNTs composite solder joints have not been deeply studied. In this research, the mechanical, photoelectric and thermal reliability of SAC307 packaged flip-chip LEDs with Ni-MWCNTs added during aging were studied.

Design/methodology/approach

Compared with SAC solder alloys, the effects of different contents (0, 0.05, 0.1 and 0.2 Wt.%) of Ni-MWCNTs on the photoelectric and thermal properties of composite solder joints were examined. To study the aging characteristics of composite solder joints, the solder joints were aged at 85°C/85% relative humidity.

Findings

The addition of an appropriate amount of reinforcing agent Ni-MWCNTs reduces the density of the composite solder to 96% of the theoretical value of the SAC solder alloy. In addition, the microhardness increases and the wetting angle decreases. Two different phase compositions were observed in the solder joints with Ni-MWCNTs reinforcement: Cu3Sn and (Cu, Ni)6Sn5. The solder joints of SAC307-0.1Ni-MWCNTs exhibit the highest luminous flux and luminous efficiency of flip-chip LED filaments, the lowest steady-state voltage and junction temperature. And with the extension of the aging time, its aging stability is the best. In short, when the addition amount of Ni-MWCNTs is 0.1 Wt.%, the solder joints exhibit the best wettability and the thinnest intermetallic compound layer. And the shear strength of the tested solder joints is the best, and the void ratio is the lowest. At this time, the enhancement effect of Ni-MWCNTs on the composite solder has been best demonstrated.

Research limitations/implications

The content range of enhancer Ni-MWCNTs needs to be further reduced.

Practical implications

The authors have improved the performance of Ni-modified MWCNTs composite solder joints.

Originality/value

Composite solder with high performance has great practical application significance for improving the reliability and life of the whole device.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 268