Search results

1 – 10 of over 3000
Article
Publication date: 2 March 2012

Eyitayo Olatunde Olakanmi, Kenneth W. Dalgarno and Robert F. Cochrane

The purpose of this paper is to study the effects of particle size distribution, component ratio, particle packing arrangement, and chemical constitution on the laser sintering…

1252

Abstract

Purpose

The purpose of this paper is to study the effects of particle size distribution, component ratio, particle packing arrangement, and chemical constitution on the laser sintering behaviour of blended hypoeutectic Al‐Si powders.

Design/methodology/approach

A range of bimodal and trimodal powder blends were created through mixing Al‐12Si and pure aluminium powder. The powder blends were then processed using selective laser sintering to investigate the effect of alloy composition, powder particle size and bed density on densification and microstructural evolution.

Findings

For all of the powder blends the sintered density increases with the specific laser energy input until a saturation level is reached. Beyond this saturation level no further increase in sintered density is obtained for an increase in specific laser energy input. However, the peak density achieved for a given blend varied significantly with the chemical constitution of the alloy, peaking at approximately 9 wt% Si. The tap density of the raw powder mixture (assumed to be representative of bed density) was also a significant factor.

Originality/value

This is the first study to consider the usefulness of silicon as an alloying element in aluminium alloys to be processed by selective laser sintering. In addition the paper outlines the key factors in optimising processing parameters and powder properties in order to attain sound sinterability for direct laser sintered parts.

Article
Publication date: 5 May 2022

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Azman Jalar, Mohamad Riduwan Ramli and Fakhrozi Che Ani

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate…

Abstract

Purpose

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate solder joint quality by quantitatively analyzing the stencil printing-deposited solder volume, solder height and solder coverage area.

Design/methodology/approach

The dispensability of different solder paste types on printed circuit board (PCB) pads using different stencil aperture shapes was evaluated. Lead-free Type 4 (20–38 µm particle size) and Type 5 (15–25 µm particle size) solder pastes were used to create solder joints according to standard reflow soldering.

Findings

The results show that the stencil aperture shape greatly affects the solder joint quality as compared with the type of solder paste. These investigations allow the development of new strategies for solving solder paste stencil printing issues and evaluating the quality of solder joints.

Originality/value

The reflow soldering process requires the appropriate selection of the stencil aperture shape according to the PCB and the solder paste according to the particle-size distribution of the solder alloy powder. However, there are scarce studies on the effects of stencil aperture shape and the solder alloy particle size on the solder paste space-filling ability.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 September 2010

S. Mallik, M. Schmidt, R. Bauer and N.N. Ekere

The purpose of this paper is to study the rheological behaviours of lead‐free solder pastes used for flip‐chip assembly applications and to correlate rheological behaviours with…

Abstract

Purpose

The purpose of this paper is to study the rheological behaviours of lead‐free solder pastes used for flip‐chip assembly applications and to correlate rheological behaviours with the printing performance.

Design/methodology/approach

A range of rheological characterization techniques including viscosity, yield stress, oscillatory and creep‐recovery tests were carried out to investigate the rheological properties and behaviours of four different solder paste formulations based on no‐clean flux composition, with different alloy composition, metal content and particle size. A series of printing tests were also conducted to correlate printing performance.

Findings

The results show that in the viscosity test, all solder pastes exhibited a shear thinning behaviour in nature with different highest maximum viscosity. The yield stress test has been used to study the effect of temperature on the flow behaviour of solder pastes. A decrease in yield stress value with temperature was observed. The results from the oscillatory test were used to study the solid‐ and liquid‐like behaviours of solder pastes. Creep‐recovery testing showed that the solder paste with smaller particle size exhibited less recovery.

Research limitations/implications

More extensive research is needed to simulate the paste‐roll, aperture‐filling and aperture‐emptying stages of the stencil printing process using rheological test methods.

Practical implications

Implementation of these rheological characterization procedures in product development, process optimization and quality control can contribute significantly to reducing defects in the assembly of flip‐chip devices and subsequently increasing the production yield.

Originality/value

The paper shows how the viscosity, yield stress, oscillatory and creep‐recovery test methods can be successfully used to characterize the flow behaviour of solder pastes and also to predict their performance during the stencil printing process.

Details

Soldering & Surface Mount Technology, vol. 22 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 25 June 2019

Muhammad Aamir, Majid Tolouei-Rad, Israr Ud Din, Khaled Giasin and Ana Vafadar

Tin-Silver-Copper is widely accepted as the best alternative to replace Tin-Lead solders in microelectronics packaging due to their acceptable properties. However, to overcome…

Abstract

Purpose

Tin-Silver-Copper is widely accepted as the best alternative to replace Tin-Lead solders in microelectronics packaging due to their acceptable properties. However, to overcome some of the shortcomings related to its microstructure and in turn, its mechanical properties at high temperature, the addition of different elements into Tin-Silver-Copper is important for investigations. The purpose of this paper is to analyse the effect of lanthanum doping on the microstructure, microhardness and tensile properties of Tin-Silver-Copper as a function of thermal aging time for 60, 120 and 180 h at a high temperature of 150°C and at high strain rates of 25, 35 and 45/s.

Design/methodology/approach

The microstructure of un-doped and Lanthanum-doped Tin-Silver-Copper after different thermal aging time is examined using scanning electron microscopy followed by digital image analyses using ImageJ. Brinell hardness is used to find out the microhardness properties. The tensile tests are performed using the universal testing machine. All the investigations are done after the above selected thermal aging time at high temperature. The tensile tests of the thermally aged specimens are further investigated at high strain rates of 25, 35 and 45/s.

Findings

According to the microstructural examination, Tin-Silver-Copper with 0.4 Wt.% Lanthanum is found to be more sensitive at high temperature as the aging time increases which resulted in coarse microstructure due to the non-uniform distribution of intermetallic compounds. Similarly, lower values of microhardness, yield strength and ultimate tensile strength come in favours of 0.4 Wt.% Lanthanum added Tin-Silver-Copper. Furthermore, when the thermally aged tensile specimen is tested at high strains, two trends in tensile curves of both the solder alloys are noted. The trends showed that yield strength and ultimate tensile strength increase as the strain rate increase and decrease when there is an increase in thermal aging.

Originality/value

The addition of higher supplement (0.4 Wt.%) of Lanthanum into Tin-Silver-Copper showed a lower hardness value, yield strength, ultimate tensile strength, ductility, toughness and fatigue in comparison to un-doped Tin-Silver-Copper at high temperature and at high strain rates. Finally, simplified material property models with minimum error are developed which will help when the actual test data are not available.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 1995

K. Akinade, R. Burgess, M. Campbell, S. Carver, L. Sanderson, R. Wade and C. Melton

The increased interest in the electronics industry to search for alternatives to lead‐containing solders is evidenced by the number of recently published articles on lead‐free…

Abstract

The increased interest in the electronics industry to search for alternatives to lead‐containing solders is evidenced by the number of recently published articles on lead‐free solders in this journal and other journals. At the latest Surface Mount International conference, several papers were presented on lead‐free solder alloys, conductive adhesives and organic preservatives, all in search of replacements for lead‐containing finishes. The efforts to find a replacement for tin/lead are in response to possible legislation banning lead or possible taxation on the use of lead. In an attempt to reduce the use of lead in this company's assembly operation, five lead‐free solder pastes and four corresponding flux vehicles (for A, B, C and E pastes) were evaluated. All of the flux vehicles passed the standard industry tests except for two flux vehicles (pastes B and C) that failed the copper mirror test. An assembly trial of the lead‐free pastes was carried out by building liquid crystal display panels with minimal process modification. Printability, process compatibility and solder joint reliability were assessed. This paper describes the preliminary results of the authors' investigation.

Details

Soldering & Surface Mount Technology, vol. 7 no. 2
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 16 December 2019

Sanaa Razzaq Abbas, Mohammed S. Gumaan and Rizk Mostafa Shalaby

This study aims to investigate the chromium (Cr) effects on the microstructural, mechanical and thermal properties of melt-spun Sn-3.5Ag alloy.

Abstract

Purpose

This study aims to investigate the chromium (Cr) effects on the microstructural, mechanical and thermal properties of melt-spun Sn-3.5Ag alloy.

Design/methodology/approach

Ternary melt-spun Sn-Ag-Cr alloys were investigated using X-ray diffractions, scanning electron microscope, dynamic resonance technique, instron machine, Vickers hardness tester and differential scanning calorimetry.

Findings

The results revealed that the Ag3Sn intermetallic compound (IMC) and ß-Sn have been refined because of the hard inclusions’ (Cr atoms) effects, causing lattice distortion increasing these alloys. The tensile results of Sn96.4-Ag3.5-Cr0.1 alloy showed an improvement in Young’s modulus more than 100 per cent (42.16 GPa), ultimate tensile strength (UTS) by 9.4 per cent (23.9 MPa), compared with the eutectic Sn-Ag alloy due to the high concentration of Ag3Sn and their uniform distribution. Shortage in the internal friction (Q−1) of about 54 per cent (45.1) and increase in Vickers hardness of about 7.4 per cent (142.1 MPa) were also noted. Hexagonal Ag3Sn formation led to low toughness values compared to the eutectic Sn-Ag alloy, which may have resulted from the mismatching among hexagonal Ag3Sn phase with orthorhombic Ag3Sn and ß-Sn phases. Mechanically, the values of Young’s modulus have been increased, with increasing chromium content, whereas the UTS and toughness values have been decreased. The opposite of this trend appeared in Sn95.8-Ag3.5-Cr0.7 alloy, which may have been due to high lattice distortion (ƹ = 16.5 × 10−4) compared to the other alloys. Increase in the melting temperature Tm, ΔH, Cp and ΔT was because of Ag3Sn IMC formation. The low toughness of Sn96-Ag3.5-Cr0.5 and Sn95.8-Ag3.5-Cr0.7 (109.56 J/m3 and 35.66 J/m3), relatively high melting temperature Tm (223.22°C and 222.65°C) and low thermal conductivity and thermal diffusivity (32.651 w.m−1.k−1 and 0.314 m2/s) make them undesirable in the soldering process. The high UTS, high E, high thermal conductivity and diffusivity, low creep rate and low electrical resistivity, which have occurred with “0.1 Wt.%” of Cr, make this alloy desirable and reliable for soldering applications and electronic assembly.

Originality/value

This study provides chromium effects on the structure of the eutectic Sn-Ag rapidly solidified by melt-spinning technique. In this paper, the authors compared the elastic modulus of the melt-spun compositions, which have been resulted from the Static method with that have been resulted from the Dynamic method. This paper presents new improvements in mechanical and thermal performance.

Details

Soldering & Surface Mount Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 October 1978

B. Todd

The use of materials in marine environments has traditionally been associated with ships. However, in recent years, important new industries have grown up which present new…

Abstract

The use of materials in marine environments has traditionally been associated with ships. However, in recent years, important new industries have grown up which present new material problems. Notable amongst such industries are offshore oil production and desalination (production of fresh water from seawater). Also, requirements for large amounts of cooling water by modern industry have often resulted in siting of plants by the ocean, particularly in arid areas such as the Middle East. This has increased interest in the use of materials for handling seawater.

Details

Anti-Corrosion Methods and Materials, vol. 25 no. 10
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 18 October 2019

Rahul S.G. and Sharmila A.

The purpose of this study is to present a comprehensive review of the fundamental concepts and terminologies pertaining to different types of aluminium metal matrix composites…

Abstract

Purpose

The purpose of this study is to present a comprehensive review of the fundamental concepts and terminologies pertaining to different types of aluminium metal matrix composites, their joining techniques and challenges, friction stir welding (FSW) process, post-welding characterizations and basic control theory of FSW, followed by the discussions on the research reports in these areas.

Design/methodology/approach

Joining of aluminium metal matrix composites (Al-MMC) poses many challenges. These materials have their demanding applications in versatile domains, and hence it is essential to understand their weldability and material characteristics. FSW is a feasible choice for joining of Al-MMC over the fusion welding because of the formation of narrow heat affected zone and minimizing the formation of intermetallic compounds at weld interface. The goal in FSW is to generate enough thermal energy by friction between the workpiece and rotating tool. Heat energy is generated by mechanical interaction because of the difference in velocity between the workpiece and rotating tool. In the present work, a detailed survey is done on the above topics and an organised conceptual context is presented. A complete discussion on significance of FSW process parameters, control schemes, parameter optimization and weld quality monitoring are presented, along with the analysis on relation between the interdependent parameters.

Findings

Results from the study present the research gaps in the FSW studies for joining of the aluminium-based metal matrix composites, and they highlight further scope of studies pertaining to this domain.

Originality/value

It is observed that the survey done on FSW of Al-MMCs and their control theory give an insight into the fundamental concepts pertaining to this research area to enhance interdisciplinary technology exploration.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1992

AMI (Affiliated Manufacturers, Inc.) has introduced a new manual vision system for alignment of printed circuit boards to screens or stencils on semi‐automatic screen printers…

Abstract

AMI (Affiliated Manufacturers, Inc.) has introduced a new manual vision system for alignment of printed circuit boards to screens or stencils on semi‐automatic screen printers. The u‐Lign™ III allows the operator to select any one of four different alignment methods when setting up for fine pitch solder paste printing. It is even possible to use different strategies in each camera window to accommodate different features at the same time. Alignment is not limited to using fiducial marks or straight edged pads, as virtually any part of a circuit pattern or repeated board markings can be used to achieve precise alignment on every board.

Details

Soldering & Surface Mount Technology, vol. 4 no. 3
Type: Research Article
ISSN: 0954-0911

1 – 10 of over 3000