Search results

1 – 10 of 97
Article
Publication date: 26 April 2024

Mawloud Titah and Mohammed Abdelghani Bouchaala

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely…

Abstract

Purpose

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.

Design/methodology/approach

The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.

Findings

Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.

Originality/value

An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 9 May 2023

Dan Wang

This research conducts bibliometric analyses and network mapping on smart libraries worldwide. It examines publication profiles, identifies the most cited publications and…

Abstract

Purpose

This research conducts bibliometric analyses and network mapping on smart libraries worldwide. It examines publication profiles, identifies the most cited publications and preferred sources and considers the cooperation of the authors, organizations and countries worldwide. The research also highlights keyword trends and clusters and finds new developments and emerging trends from the co-cited references network.

Design/methodology/approach

A total of 264 records with 1,200 citations were extracted from the Web of Science database from 2003 to 2021. The trends in the smart library were analyzed and visualized using BibExcel, VOSviewer, Biblioshiny and CiteSpace.

Findings

The People’s Republic of China had the most publications (119), the most citations (374), the highest H-index (12) and the highest total link strength (TLS = 25). Wuhan University had the highest H-index (6). Chiu, Dickson K. W. (H-index = 4, TLS = 22) and Lo, Patrick (H-index = 4, TLS = 21) from the University of Hong Kong had the highest H-indices and were the most cooperative authors. Library Hi Tech was the most preferred journal. “Mobile library” was the most frequently used keyword. “Mobile context” was the largest cluster on the research front.

Research limitations/implications

This study helps librarians, scientists and funders understand smart library trends.

Originality/value

There are several studies and solid background research on smart libraries. However, to the best of the author’s knowledge, this study is the first to conduct bibliometric analyses and network mapping on smart libraries around the globe.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 8 June 2023

Sobah Abbas Petersen, Tor Åsmund Evjen and John Krogstie

The main aim of this paper is to describe the potential benefits of enterprise building information models (EBIMs) for health-care institutions. The main research question…

Abstract

Purpose

The main aim of this paper is to describe the potential benefits of enterprise building information models (EBIMs) for health-care institutions. The main research question addressed is how data from EBIM could be leveraged to create value for hospitals beyond design, construction and traditional facility management.

Design/methodology/approach

Three different prototypes, which use different technologies in combination with EBIM, are described to illustrate different uses of EBIM within the context of a hospital and health-care operations. The case study approach has been used to present the prototypes.

Findings

EBIM data, in combination with other data sources, increases the potential benefits of the data with respect to many health-care-related processes, during the operation of a health-care institution. The benefits of EBIM span beyond the design and construction life cycle phases of a hospital and provide value to a variety of stakeholders in multiple health-care-related processes.

Research limitations/implications

The main limitation of this work is the limited sources of data and information such as the specific methods that were used in the design and development of each of the prototypes and a deeper insight into the design rationale and decisions. Another limitation of this paper is that the findings have not been validated.

Practical implications

This study demonstrates the value of convergence of a number of technologies such as EBIM, data and different types of technologies, throughout the life cycle of a building. This study also highlights the value of building information models (BIMs) data for supporting the design of novel educational and other types of application areas. The practical implications include the value for multiple stakeholders, such as resources planning, fleet and equipment management and contract negotiation. Benefits identified for resource planning can have strategic and financial implications at the management level. For patients, visitors and health-care personnel, there may be reduced infections, cleaner and pleasant facilities as well as a reduction of time to find relevant resources.

Social implications

Social implications" could be replaced by "For patients, visitors and health-care personnel, there may be cleaner and pleasant facilities and easy navigation support through the hospital. Furthermore, enhanced access to knowledge and information about the artefact and assets in the hospital can enhance learning and knowledge sharing.

Originality/value

This study identifies the lack of research in using BIM with other data for value-added services for multiple stakeholders in the operations phase of a hospital and addresses that research gap.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 26 September 2023

Upinder Kumar, Mahender Singh Kaswan, Rakesh Kumar, Rekha Chaudhary, Jose Arturo Garza-Reyes, Rajeev Rathi and Rohit Joshi

The main aim of this study is to review different aspects of Industry 5.0 (I5.0) along with Kaizen measures to foster this novel aspect of industrial sustainability. The study…

Abstract

Purpose

The main aim of this study is to review different aspects of Industry 5.0 (I5.0) along with Kaizen measures to foster this novel aspect of industrial sustainability. The study makes a comprehensive study to explore the implementation status of I5.0 in industries, key technologies, adoption level in different nations and barriers to I5.0 adoption together with mitigation actions.

Design/methodology/approach

To do a systematic study of the literature, the authors have used preferred reporting items for systematic reviews and meta-analysis (PRISMA) methodology to extract articles related to the field of the study.

Findings

It has been found that academic literature on the I5.0 is continuously growing as the wheel of time is running. Most of the studies on I5.0 are conceptual-based, and manufacturing and medical industries are the flag bearer in the adoption of this novel aspect. Further, due to I5.0's infancy, many organizations face difficulty to adopt the same due to financial burden, resistive nature, a well-designed standard for cyber-physical systems (CPS) and an effective mechanism for human–robot collaboration. Further studies also provide avenues for future research in terms of the identification of collaborative mechanisms between machines and wells, the establishment of different standards for comparison and the development of I5.0-enabled models for different industrial domains.

Originality/value

The study is the first of its kind that reviews different facets of I5.0in conjunction with Kaizen's measures and application areas and provides avenues for future research to improve an organization's environmental and social sustainability.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 22 November 2023

Thomas Mashilo Modiba and Collence Takaingenhamo Chisita

The study aims to draw lessons from other countries and propose a framework for developing smart libraries in transformation in South Africa. The framework will be useful to…

Abstract

Purpose

The study aims to draw lessons from other countries and propose a framework for developing smart libraries in transformation in South Africa. The framework will be useful to policymakers and scholars in library and information science.

Design/methodology/approach

This study used a qualitative approach based on a systematic literature review and the researchers’ experience concerning the transformation of smart libraries in South Africa. The researchers selected databases to access full-text, abstract or full-text linking facilities. The researchers generated the study’s literature review using keywords derived from themes. The keywords used include “smart libraries,” “functions of smart libraries” and “smart library infrastructure,” based on the objectives of the study.

Findings

The findings reveal that developing smart libraries in South Africa is feasible, but all stakeholders must cooperate and collaborate to create smart libraries. The findings of this study show that South Africa can draw lessons from other countries on the way forward in developing smart libraries. The results indicate that lack of funding, digital infrastructure and technical skills are among the factors inhibiting the development of smart libraries.

Originality/value

The issue of smart libraries has become a key on the agenda on a global scale, and South Africa is no exception to such developments. This study proposes a framework for developing smart libraries based on lessons learned within and outside South Africa.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 2 January 2024

Dimitrios Markopoulos, Anastasios Tsolakidis, Ioannis Triantafyllou, Georgios A. Giannakopoulos and Christos Skourlas

This study aims to analyze a conspicuous corpus of literature related to the field of technology-based intensive care research and to develop an architecture model of the future…

Abstract

Purpose

This study aims to analyze a conspicuous corpus of literature related to the field of technology-based intensive care research and to develop an architecture model of the future smart intensive care unit (ICU).

Design/methodology/approach

Papers related to the topics of electronic health record (EHR), big data, data flow and clinical decision support in ICUs were investigated. These concepts have been analyzed in combination with secondary use of data, prediction models, data standardization and interoperability challenges. Based on the findings, an architecture model evaluated using MIMIC III is proposed.

Findings

Research identified issues regarding implementation of systems, data sources, interoperability, management of big data and free text produced in ICUs and lack of accuracy of prediction models. ICU should be treated as part of a greater system, able to intercommunicate with other entities.

Research limitations/implications

The research examines the current needs of ICUs in interoperability and data management. As environment changes dynamically, continuous assessment and evaluation of the model with other ICU databases is required.

Originality/value

The proposed model improves ICUs interoperability in national health system, ICU staff intercommunication, remote access and decision support. Its modular approach ensures that ICUs can have their own particularities and specialisms while ICU functions provide ongoing expertise and training to upgrade its staff.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 18 March 2024

Nuno Miguel de Matos Torre and Andrei Bonamigo

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems…

Abstract

Purpose

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems one of the issues that require a high level of attention. This study aims to explore an empirical investigation for decreasing the occurrences of corrective maintenance of hydraulic systems in the context of Lean 4.0.

Design/methodology/approach

The maintenance model is developed based on action-research methodology through an empirical investigation, with nine stages. This approach aims to build a scenario to analyze and interpret the occurrences, seeking to implement and evaluate the actions to be performed. The undertaken initiatives demonstrate that this approach can be applied to optimize the maintenance of an organization.

Findings

The main contribution of this paper is to demonstrate that the applied method allows the overviewing results, with a qualitative approach concerning the maintenance actions and management processes to be considered, allowing a holistic understanding and contributing to the current literature. The results also indicated that Lean 4.0 has direct and mediating effects on maintenance performance.

Originality/value

This research intends to propose an evaluation framework with an interdimensional linkage between action research methodology and Lean 4.0, to explore an empirical investigation and contributing to understanding the actions to reduce the occurrences of hydraulic systems corrective maintenance in a production line in the steel industry.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 18 September 2023

Mohammadreza Akbari

The purpose of this study is to examine how the implementation of edge computing can enhance the progress of the circular economy within supply chains and to address the…

Abstract

Purpose

The purpose of this study is to examine how the implementation of edge computing can enhance the progress of the circular economy within supply chains and to address the challenges and best practices associated with this emerging technology.

Design/methodology/approach

This study utilized a streamlined evaluation technique that employed Latent Dirichlet Allocation modeling for thorough content analysis. Extensive searches were conducted among prominent publishers, including IEEE, Elsevier, Springer, Wiley, MDPI and Hindawi, utilizing pertinent keywords associated with edge computing, circular economy, sustainability and supply chain. The search process yielded a total of 103 articles, with the keywords being searched specifically within the titles or abstracts of these articles.

Findings

There has been a notable rise in the volume of scholarly articles dedicated to edge computing in the circular economy and supply chain management. After conducting a thorough examination of the published papers, three main research themes were identified, focused on technology, optimization and circular economy and sustainability. Edge computing adoption in supply chains results in a more responsive, efficient and agile supply chain, leading to enhanced decision-making capabilities and improved customer satisfaction. However, the adoption also poses challenges, such as data integration, security concerns, device management, connectivity and cost.

Originality/value

This paper offers valuable insights into the research trends of edge computing in the circular economy and supply chains, highlighting its significant role in optimizing supply chain operations and advancing the circular economy by processing and analyzing real time data generated by the internet of Things, sensors and other state-of-the-art tools and devices.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Access

Year

Last 12 months (97)

Content type

Earlycite article (97)
1 – 10 of 97