Search results

1 – 10 of over 16000
Article
Publication date: 17 September 2021

Sukumar Rajendran, Sandeep Kumar Mathivanan, Prabhu Jayagopal, Kumar Purushothaman Janaki, Benjula Anbu Malar Manickam Bernard, Suganya Pandy and Manivannan Sorakaya Somanathan

Artificial Intelligence (AI) has surpassed expectations in opening up different possibilities for machines from different walks of life. Cloud service providers are pushing. Edge

Abstract

Purpose

Artificial Intelligence (AI) has surpassed expectations in opening up different possibilities for machines from different walks of life. Cloud service providers are pushing. Edge computing reduces latency, improving availability and saving bandwidth.

Design/methodology/approach

The exponential growth in tensor processing unit (TPU) and graphics processing unit (GPU) combined with different types of sensors has enabled the pairing of medical technology with deep learning in providing the best patient care. A significant role of pushing and pulling data from the cloud, big data comes into play as velocity, veracity and volume of data with IoT assisting doctors in predicting the abnormalities and providing customized treatment based on the patient electronic health record (EHR).

Findings

The primary focus of edge computing is decentralizing and bringing intelligent IoT devices to provide real-time computing at the point of presence (PoP). The impact of the PoP in healthcare gains importance as wearable devices and mobile apps are entrusted with real-time monitoring and diagnosis of patients. The impact edge computing of the PoP in healthcare gains significance as wearable devices and mobile apps are entrusted with real-time monitoring and diagnosis of patients.

Originality/value

The utility value of sensors data improves through the Laplacian mechanism of preserved PII response to each query from the ODL. The scalability is at 50% with respect to the sensitivity and preservation of the PII values in the local ODL.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 June 2021

Shengpei Zhou, Zhenting Chang, Haina Song, Yuejiang Su, Xiaosong Liu and Jingfeng Yang

With the continuous technological development of automated driving and expansion of its application scope, the types of on-board equipment continue to be enriched and the computing

Abstract

Purpose

With the continuous technological development of automated driving and expansion of its application scope, the types of on-board equipment continue to be enriched and the computing capabilities of on-board equipment continue to increase and corresponding applications become more diverse. As the applications need to run on on-board equipment, the requirements for the computing capabilities of on-board equipment become higher. Mobile edge computing is one of the effective methods to solve practical application problems in automated driving.

Design/methodology/approach

In this study, in accordance with practical requirements, this paper proposed an optimal resource management allocation method of autonomous-vehicle-infrastructure cooperation in a mobile edge computing environment and conducted an experiment in practical application.

Findings

The design of the road-side unit module and its corresponding real-time operating system task coordination in edge computing are proposed in the study, as well as the method for edge computing load integration and heterogeneous computing. Then, the real-time scheduling of highly concurrent computation tasks, adaptive computation task migration method and edge server collaborative resource allocation method is proposed. Test results indicate that the method proposed in this study can greatly reduce the task computing delay, and the power consumption generally increases with the increase of task size and task complexity.

Originality/value

The results showed that the proposed method can achieve lower power consumption and lower computational overhead while ensuring the quality of service for users, indicating a great application prospect of the method.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 July 2022

Joy Iong-Zong Chen, Ping-Feng Huang and Chung Sheng Pi

Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed…

Abstract

Purpose

Apart from, the smart edge computing (EC) robot (SECR) provides the tools to manage Internet of things (IoT) services in the edge landscape by means of real-world test-bed designed in ECR. Eventually, based on the results from two experiments held in little constrained condition, such as the maximum data size is 2GB, the performance of the proposed techniques demonstrate the effectiveness, scalability and performance efficiency of the proposed IoT model.

Design/methodology/approach

Certainly, the proposed SECR is trying primarily to take over other traditional static robots in a centralized or distributed cloud environment. One aspect of representation of the proposed edge computing algorithms is due to challenge to slow down the consumption of time which happened in an artificial intelligence (AI) robot system. Thus, the developed SECR trained by tiny machine learning (TinyML) techniques to develop a decentralized and dynamic software environment.

Findings

Specifically, the waste time of SECR has actually slowed down when it is embedded with Edge Computing devices in the demonstration of data transmission within different paths. The TinyML is applied to train with image data sets for generating a framework running in the SECR for the recognition which has also proved with a second complete experiment.

Originality/value

The work presented in this paper is the first research effort, and which is focusing on resource allocation and dynamic path selection for edge computing. The developed platform using a decoupled resource management model that manages the allocation of micro node resources independent of the service provisioning performed at the cloud and manager nodes. Besides, the algorithm of the edge computing management is established with different path and pass large data to cloud and receive it. In this work which considered the SECR framework is able to perform the same function as that supports to the multi-dimensional scaling (MDS).

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 18 July 2022

Kamal Gulati and Pallavi Seth

Introduction: With many new technologies requiring real-time data processing, cloud computing has become challenging to implement due to high bandwidth and high latency…

Abstract

Introduction: With many new technologies requiring real-time data processing, cloud computing has become challenging to implement due to high bandwidth and high latency requirements.

Purpose: To overcome this issue, edge computing is used to process data at the network’s edge. Edge computing is a distributed computing paradigm that brings computation and data storage closer to the location where it is needed. It is used to process time-sensitive data.

Methodology: The authors implemented the model using Linux Foundation’s open-source platform EdgeX Foundry to create an edge-computing device. The model involved getting data from an on-board sensor (on-board diagnostics (OBD-II)) and the GPS sensor of a car. The data are then observed and computed to the EdgeX server. The single server will send data to serve three real-life internet of things (IoT) use cases: auto insurance, supporting a smart city, and building a personal driving record.

Findings: The main aim of this model is to illustrate how edge computing can improve both latency and bandwidth usage needed for real-world IoT applications.

Details

Big Data Analytics in the Insurance Market
Type: Book
ISBN: 978-1-80262-638-4

Keywords

Article
Publication date: 28 February 2023

Tulsi Pawan Fowdur, M.A.N. Shaikh Abdoolla and Lokeshwar Doobur

The purpose of this paper is to perform a comparative analysis of the delay associated in running two real-time machine learning-based applications, namely, a video quality…

Abstract

Purpose

The purpose of this paper is to perform a comparative analysis of the delay associated in running two real-time machine learning-based applications, namely, a video quality assessment (VQA) and a phishing detection application by using the edge, fog and cloud computing paradigms.

Design/methodology/approach

The VQA algorithm was developed using Android Studio and run on a mobile phone for the edge paradigm. For the fog paradigm, it was hosted on a Java server and for the cloud paradigm on the IBM and Firebase clouds. The phishing detection algorithm was embedded into a browser extension for the edge paradigm. For the fog paradigm, it was hosted on a Node.js server and for the cloud paradigm on Firebase.

Findings

For the VQA algorithm, the edge paradigm had the highest response time while the cloud paradigm had the lowest, as the algorithm was computationally intensive. For the phishing detection algorithm, the edge paradigm had the lowest response time, and the cloud paradigm had the highest, as the algorithm had a low computational complexity. Since the determining factor for the response time was the latency, the edge paradigm provided the smallest delay as all processing were local.

Research limitations/implications

The main limitation of this work is that the experiments were performed on a small scale due to time and budget constraints.

Originality/value

A detailed analysis with real applications has been provided to show how the complexity of an application can determine the best computing paradigm on which it can be deployed.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Expert briefing
Publication date: 31 May 2019

Edge computing.

Details

DOI: 10.1108/OXAN-DB244253

ISSN: 2633-304X

Keywords

Geographic
Topical
Open Access
Article
Publication date: 19 May 2022

Akhilesh S Thyagaturu, Giang Nguyen, Bhaskar Prasad Rimal and Martin Reisslein

Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long…

1039

Abstract

Purpose

Cloud computing originated in central data centers that are connected to the backbone of the Internet. The network transport to and from a distant data center incurs long latencies that hinder modern low-latency applications. In order to flexibly support the computing demands of users, cloud computing is evolving toward a continuum of cloud computing resources that are distributed between the end users and a distant data center. The purpose of this review paper is to concisely summarize the state-of-the-art in the evolving cloud computing field and to outline research imperatives.

Design/methodology/approach

The authors identify two main dimensions (or axes) of development of cloud computing: the trend toward flexibility of scaling computing resources, which the authors denote as Flex-Cloud, and the trend toward ubiquitous cloud computing, which the authors denote as Ubi-Cloud. Along these two axes of Flex-Cloud and Ubi-Cloud, the authors review the existing research and development and identify pressing open problems.

Findings

The authors find that extensive research and development efforts have addressed some Ubi-Cloud and Flex-Cloud challenges resulting in exciting advances to date. However, a wide array of research challenges remains open, thus providing a fertile field for future research and development.

Originality/value

This review paper is the first to define the concept of the Ubi-Flex-Cloud as the two-dimensional research and design space for cloud computing research and development. The Ubi-Flex-Cloud concept can serve as a foundation and reference framework for planning and positioning future cloud computing research and development efforts.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 5 August 2019

Mohammad Irfan Bala and Mohammad Ahsan Chishti

Fog computing is a new field of research and has emerged as a complement to the cloud which can mitigate the problems inherent to the cloud computing model such as unreliable…

Abstract

Purpose

Fog computing is a new field of research and has emerged as a complement to the cloud which can mitigate the problems inherent to the cloud computing model such as unreliable latency, bandwidth constraints, security and mobility. This paper aims to provide detailed survey in the field of fog computing covering the current state-of-the-art in fog computing.

Design/methodology/approach

Cloud was developed for IT and not for Internet of Things (IoT); as a result, cloud is unable to meet the computing, storage, control and networking demands of the IoT applications. Fog is a companion for the cloud and aims to extend the cloud capabilities to the edge of the network.

Findings

Lack of survey papers in the area of fog computing was an important motivational factor for writing this paper. This paper highlights the capabilities of the fog computing and where it fits in between IoT and cloud. This paper has also presented architecture of the fog computing model and its characteristics. Finally, the challenges in the field of fog computing have been discussed in detail which need to be overcome to realize its full potential.

Originality/value

This paper presents the current state-of-the-art in fog computing. Lack of such papers increases the importance of this paper. It also includes challenges and opportunities in the fog computing and various possible solutions to overcome those challenges.

Details

International Journal of Pervasive Computing and Communications, vol. 15 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 8 July 2022

Jianhua Liu, Zibo Wu, Jiajia Liu and Yao Zou

In order to solve the problem of how to reduce the service delay of edge computing, this paper proposes an edge cloud framework, which contains four groups under different…

Abstract

Purpose

In order to solve the problem of how to reduce the service delay of edge computing, this paper proposes an edge cloud framework, which contains four groups under different locations between mobile edge nodes and users. A feasible cost scheme can be obtained by calculating the cost in different simulation groups. Furthermore, we give suggestions on how to deploy edge nodes at a reasonable cost for users effectively.

Design/methodology/approach

This paper is motivated by the IoT-Cloud framework; they are divided according to whether the nodes have templates required by users and the distance from users to distinguish various consumption levels and classify the testing result. Based on four different groups satisfying reasonable resource allocation, the cost was studied. The work focuses on the unpredictable movement within the test range. For assignment and scheduling of template tasks at each time slot, the Edge-Cloud scheme is proposed to reduce the cost.

Findings

According to the simulation results in this paper, the total cost of the four groups is lower when the closest node-set satisfies the user service directly. To improve the probability that the closest node-set can meet general requests of users and provide them with faster and more economical network services, increasing the number of edge nodes within the range of user activities is suggested.

Originality/value

An Edge-Cloud framework is constructed in four groups, and the conclusion of a feasible cost scheme came out.

Details

International Journal of Web Information Systems, vol. 18 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 5 February 2018

Zhi Li, W.M. Wang, Guo Liu, Layne Liu, Jiadong He and G.Q. Huang

The purpose of this paper is to propose a cross-enterprises framework to achieve a higher level of sharing of knowledge and services in manufacturing ecosystems.

5068

Abstract

Purpose

The purpose of this paper is to propose a cross-enterprises framework to achieve a higher level of sharing of knowledge and services in manufacturing ecosystems.

Design/methodology/approach

The authors describe the development of the emerging open manufacturing and discuss the model of knowledge creation processes of manufacturers. The authors present a decentralized framework based on blockchain and edge computing technologies, which consists of a customer layer, an enterprise layer, an application layer, an intelligence layer, a data layer, and an infrastructure layer. And a case study is provided to illustrate the effectiveness of the framework.

Findings

The authors discuss that the manufacturing ecosystem is changing from integrated and centralized systems to shared and distributed systems. The proposed framework incorporates the recent development in blockchain and edge computing that can meet the secure and distributed requirements for the sharing of knowledge and services in manufacturing ecosystems.

Practical implications

The proposed framework provides a more secure and controlled way to share knowledge and services, thereby supports the company to develop scalable and flexible business at a lower cost, and ultimately improves the overall quality, efficiency, and effectiveness of manufacturing services.

Originality/value

The proposed framework incorporates the recent development in edge computing technologies to achieve a flexible and distributed network. With the blockchain technology, it provides standards and protocols for implementing the framework and ensures the security issues. Not only information can be shared, but the framework also supports in the exchange of knowledge and services so that the parties can contribute their parts.

Details

Industrial Management & Data Systems, vol. 118 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 16000