Search results

1 – 10 of over 28000
To view the access options for this content please click here
Article
Publication date: 31 July 2021

Jianyu Zhao, Shengliang Li, Xi Xi and Caiyan Gong

Because the discontinuous and uncertain characteristics of knowledge-based innovation cannot be reasonably interpreted by conventional management approaches, quantum…

Abstract

Purpose

Because the discontinuous and uncertain characteristics of knowledge-based innovation cannot be reasonably interpreted by conventional management approaches, quantum mechanics which begins with uncertainty and concerns with a dynamic process of the complex system, has been exploratorily used in the management field. Although the theoretical new insights are provided by pioneering studies, quantitative research is in short supply. This paper aims to propose a quantum mechanics-based framework for quantitative research, thus extending the application of quantum mechanics in the knowledge management area from a dynamic system evolutionary standpoint.

Design/methodology/approach

Based on the similarity comparison between knowledge-based system evolution and atomic motion, the authors construct the atom-like structure of the knowledge-based system and elaborate the evolutionary mechanism of the knowledge-based system, thereby establishing the quantitative model. Apple and Zhongxing Telecom Equipment were selected for an empirical study to demonstrate the usefulness of the models for research on knowledge-based innovation and explore the unique knowledge-based innovation characteristics of the two firms.

Findings

First, the transition force of dynamic knowledge shows an inverted U shape; accumulating dynamic knowledge to a moderate degree not only facilitates transforming dynamic knowledge into static knowledge but also balances the relationship between the influence of knowledge force range and dynamic knowledge transformation. Second, existing knowledge is gradually substituted by new knowledge and knowledge density at a high knowledge energy level distinctly increases with a narrower bandwidth. Third, the investment loss is associated with resource configuration, resource utilization and the amount of accumulative dynamic knowledge before investment. Knowledge loss is negatively correlated with the knowledge compatibility coefficient.

Research limitations/implications

The authors use the advanced method in quantum mechanics to legitimately unveil the emergence mechanism of knowledge-based innovation. Meanwhile, the authors capture the non-linear transformation relationship of heterogeneous knowledge and expose the change in ways of both investment loss and knowledge loss that cannot be quantified by conventional models. In doing so, the authors not only reveal the principle of qualitative knowledge change but also offer practical implications for developing flexible and targeted innovation strategies.

Originality/value

First, by proposing a complete quantum mechanics-based framework, the authors not only supplement the quantitative research contents to knowledge-based innovation literature which proposed calls to conduct research in way of quantum mechanics but also overcome the difficulties of knowledge-based system conceptualization and measurement. Second, the authors reveal the uncertain change of knowledge transformation and measure the loss of investment and knowledge, which contribute to identifying defects of firms in knowledge-based innovation. Third, the authors explore the internal mechanism that led to knowledge-based innovation exhibits non-linear characteristics and capture unique dynamic relationships between different variables which affect the emergence of knowledge-based innovation.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

To view the access options for this content please click here
Article
Publication date: 24 April 2007

Waymond Rodgers

Purpose – The purpose of this paper is to provide a measurement system of knowledge‐based assets for graduate students, researchers and practitioners which can help them…

Downloads
1514

Abstract

Purpose – The purpose of this paper is to provide a measurement system of knowledge‐based assets for graduate students, researchers and practitioners which can help them enhance their understanding of valuation issues. Design/methodology/approach – Three types of validity are reported to be relevant for the purposes of understanding knowledge‐based assets information systems: criterion validity – establishment of a statistical relationship with a knowledge‐based information system and productivity; content validity – representation of a specified universe of contents in the knowledge‐based information system; construct validity – measurement of knowledge. Findings – A framework is provided that helps explain why measurement is important in deciding characteristics such as information value, cost, reliability, validity, and bias (random and non‐random error) which is germane to the development of an efficient and effective knowledge‐based assets information system. Practical implications – The paper is a very useful source of information for graduate students, researchers and practitioners involved with testing, designing, valuing and/or implementing a knowledge‐based information system. Originality/value – A measurement model is presented that may spark future models that can be implemented, tested and translated into actions in various organizational settings.

Details

Journal of Intellectual Capital, vol. 8 no. 2
Type: Research Article
ISSN: 1469-1930

Keywords

To view the access options for this content please click here
Article
Publication date: 1 September 1992

Rambabu Kodali

Decision making in Flexible Manufacturing Systems (FMS) isdifficult because of their high complexity level. The operational levelof FMS is concerned with the detailed…

Abstract

Decision making in Flexible Manufacturing Systems (FMS) is difficult because of their high complexity level. The operational level of FMS is concerned with the detailed decision making required for real‐time operation. This applies to various control problems such as selection of a transportation path to move parts between stations. Describes a prototype knowledge‐based system for selection of a transport path in real‐time control of FMS. The knowledge‐based system is evaluated with an empirical approach.

Details

International Journal of Operations & Production Management, vol. 12 no. 9
Type: Research Article
ISSN: 0144-3577

Keywords

To view the access options for this content please click here
Article
Publication date: 1 May 1989

Joe Peppard

The application of information technology (IT) to corporateenvironments is now widespread. Recent years have seen IT successfullyapplied to a wide range of corporate…

Abstract

The application of information technology (IT) to corporate environments is now widespread. Recent years have seen IT successfully applied to a wide range of corporate activities. Artificial intelligence, in the guise of knowledge‐based systems is on the point of delivering its long awaited potential. With many successful systems developed over the past three or four years, the time is now ripe for the corporation to develop a coherent strategy to investigate and exploit this technology. In this, the second of two articles looking at knowledge‐based systems, we examine how the corporation can exploit this technology for strategic and competitive advantage. It discusses the organisational implications of KBS as well as the impact and pay‐off that can be expected.

Details

Management Decision, vol. 27 no. 5
Type: Research Article
ISSN: 0025-1747

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 1991

Grant Masom

As it becomes increasingly evident that skillsshortage in many areas of business and commerceis likely to grow, it is clear that knowledge‐basedsystems can go some way…

Abstract

As it becomes increasingly evident that skills shortage in many areas of business and commerce is likely to grow, it is clear that knowledge‐based systems can go some way towards replacing human resources. The use of these systems also increases the productivity and effectiveness of already experienced personnel and also brings with it consistent standards of performance and reliability. A better balance is also achievable between the tasks done by employees and those performed by machines.

Details

Industrial Management & Data Systems, vol. 91 no. 7
Type: Research Article
ISSN: 0263-5577

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 1998

EDIZ ALKOC and FUAT ERBATUR

The present paper reports on the development of SITE EXPERT: a prototype knowledge‐based expert system. It is an advisory system. SITE EXPERT is intended to be used for…

Abstract

The present paper reports on the development of SITE EXPERT: a prototype knowledge‐based expert system. It is an advisory system. SITE EXPERT is intended to be used for productivity improvement in construction and provides advice on: (1) the productivity of three basic operations of construction, i.e. pouring and placing of concrete, erection and removal of formwork, and fixing reinforcement; and (2) human resources and site layout as productivity factors. The system uses information from construction experts, text books, data recorded at construction sites and the engineer's own knowledge, as well as knowledge obtained by running simulation models. In the present paper, the development, operation and evaluation of the prototype system is described. The results of this prototype system development demonstrate that artificial intelligence methodologies provide powerful facilities for capturing information about construction processes and advising the practitioners of construction on productivity improvement within a computer format close to human reasoning.

Details

Engineering, Construction and Architectural Management, vol. 5 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 1 May 2006

Mohd Syazwan Abdullah, Chris Kimble, Ian Benest and Richard Paige

The goal of this paper is to re‐evaluate the role of knowledge‐based systems (KBS) in knowledge management (KM). While knowledge‐based systems and expert systems were

Downloads
3643

Abstract

Purpose

The goal of this paper is to re‐evaluate the role of knowledge‐based systems (KBS) in knowledge management (KM). While knowledge‐based systems and expert systems were widely used in the past, they have now fallen from favor and are largely ignored in the knowledge management literature. This paper aims to argue that several factors have changed and it is now time to re‐evaluate the contribution that such systems can make to knowledge management.

Design/methodology/approach

The role of KBS in KM is explored through a comprehensive analysis of both the management and the technical literature on knowledge. The literature on KBS and expert systems is reviewed and some of the problems faced by them are highlighted. Some of the probable causes of these problems and some of the solutions that might be used to overcome them are indicated. The paper describes how knowledge systems (KS) could be used as an effective tool for managing knowledge.

Findings

The lack of success of KBS technologies for managing knowledge is mainly due to organizational and managerial issues. These problems can be solved through feasibility studies before system development activities. KS technology is now being successfully applied in a variety of newer domains that exploit its capabilities.

Practical implications

Some conclusions are drawn concerning integration of knowledge systems with knowledge management, problems of the early implementation of knowledge systems technology, and possible solution to overcome these problems.

Originality/value

The main contribution of the article is in re‐evaluating the role of knowledge‐based systems as a tool for knowledge management.

Details

Journal of Knowledge Management, vol. 10 no. 3
Type: Research Article
ISSN: 1367-3270

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 1988

Sture Hägglund

Knowledge‐based systems, especially so‐called expert systems, which replicate the problem‐solving or decision‐making capabilities of human experts in specific areas, have…

Abstract

Knowledge‐based systems, especially so‐called expert systems, which replicate the problem‐solving or decision‐making capabilities of human experts in specific areas, have recently gained considerable widespread interest. The advent of such systems emphasizes the critical role of employee competence, skills, knowledge and experience in an organization. This paper presents the salient features of knowledge‐based computing systems in modern office environments. In particular, I consider topics related to critiquing consultation systems and the possibilities of re‐using knowledge bases for training. The paper also discusses possible consequences, benefits, problems and other important issues in the area.

Details

Office Technology and People, vol. 4 no. 2
Type: Research Article
ISSN: 0167-5710

To view the access options for this content please click here
Article
Publication date: 8 June 2010

Rosa M. Rodríguez, Macarena Espinilla, Pedro J. Sánchez and Luis Martínez‐López

Analyzing current recommender systems, it is observed that the cold start problem is still too far away to be satisfactorily solved. This paper aims to present a hybrid…

Abstract

Purpose

Analyzing current recommender systems, it is observed that the cold start problem is still too far away to be satisfactorily solved. This paper aims to present a hybrid recommender system which uses a knowledge‐based recommendation model to provide good cold start recommendations.

Design/methodology/approach

Hybridizing a collaborative system and a knowledge‐based system, which uses incomplete preference relations means that the cold start problem is solved. The management of customers' preferences, necessities and perceptions implies uncertainty. To manage such an uncertainty, this information has been modeled by means of the fuzzy linguistic approach.

Findings

The use of linguistic information provides flexibility, usability and facilitates the management of uncertainty in the computation of recommendations, and the use of incomplete preference relations in knowledge‐based recommender systems improves the performance in those situations when collaborative models do not work properly.

Research limitations/implications

Collaborative recommender systems have been successfully applied in many situations, but when the information is scarce such systems do not provide good recommendations.

Practical implications

A linguistic hybrid recommendation model to solve the cold start problem and provide good recommendations in any situation is presented and then applied to a recommender system for restaurants.

Originality/value

Current recommender systems have limitations in providing successful recommendations mainly related to information scarcity, such as the cold start. The use of incomplete preference relations can improve these limitations, providing successful results in such situations.

Details

Internet Research, vol. 20 no. 3
Type: Research Article
ISSN: 1066-2243

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 1988

J. Peppard and P.L. Henry

Knowledge‐based systems are beginning to provide executives with powerful systems which serve to automate corporate expertise. This is the first of two articles exploring…

Abstract

Knowledge‐based systems are beginning to provide executives with powerful systems which serve to automate corporate expertise. This is the first of two articles exploring KBS and their corporate implications.

Details

Management Decision, vol. 26 no. 6
Type: Research Article
ISSN: 0025-1747

1 – 10 of over 28000