Search results

1 – 10 of 309
Article
Publication date: 18 September 2024

Felipe Terra Mohad, Leonardo de Carvalho Gomes, Guilherme da Luz Tortorella and Fernando Henrique Lermen

Total productive maintenance consists of strategies and procedures that aim to guarantee the entire functioning of machines in a production process so that production is not…

Abstract

Purpose

Total productive maintenance consists of strategies and procedures that aim to guarantee the entire functioning of machines in a production process so that production is not interrupted and no loss of quality in the final product occurs. Planned maintenance is one of the eight pillars of total productive maintenance, a set of tools considered essential to ensure equipment reliability and availability, reduce unplanned stoppage and increase productivity. This study aims to analyze the influence of statistical reliability on the performance of such a pillar.

Design/methodology/approach

In this study, we utilized a multi-method approach to rigorously examine the impact of statistical reliability on the planned maintenance pillar within total productive maintenance. Our methodology combined a detailed statistical analysis of maintenance data with advanced reliability modeling, specifically employing Weibull distribution to analyze failure patterns. Additionally, we integrated qualitative insights gathered through semi-structured interviews with the maintenance team, enhancing the depth of our analysis. The case study, conducted in a fertilizer granulation plant, focused on a critical failure in the granulator pillow block bearing, providing a comprehensive perspective on the practical application of statistical reliability within total productive maintenance; and not presupposing statistical reliability is the solution over more effective methods for the case.

Findings

Our findings reveal that the integration of statistical reliability within the planned maintenance pillar significantly enhances predictive maintenance capabilities, leading to more accurate forecasts of equipment failure modes. The Weibull analysis of the granulator pillow block bearing indicated a mean time between failures of 191.3 days, providing support for optimizing maintenance schedules. Moreover, the qualitative insights from the maintenance team highlighted the operational benefits of our approach, such as improved resource allocation and the need for specialized training. These results demonstrate the practical impact of statistical reliability in preventing unplanned downtimes and informing strategic decisions in maintenance planning, thereby emphasizing the importance of your work in the field.

Originality/value

In terms of the originality and practicality of this study, we emphasize the significant findings that underscore the positive influence of using statistical reliability in conjunction with the planned maintenance pillar. This approach can be instrumental in designing and enhancing component preventive maintenance plans. Furthermore, it can effectively manage equipment failure modes and monitor their useful life, providing valuable insights for professionals in total productive maintenance.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 25 December 2023

Anna Trubetskaya, Alan Ryan, Daryl John Powell and Connor Moore

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk…

1280

Abstract

Purpose

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk volumes. Further capacity gains may be achieved by extending the processing season into the winter, a key enabler for which being the reduction of duration of the winter maintenance overhaul period. This paper aims to investigate if Lean Six Sigma tools and techniques can be used to enhance operational maintenance performance, thereby releasing additional processing capacity.

Design/methodology/approach

Combining the Six-Sigma Define, Measure, Analyse, Improve, Control (DMAIC) methodology and the structured approach of Turnaround Maintenance (TAM) widely used in process industries creates a novel hybrid model that promises substantial improvement in maintenance overhaul execution. This paper presents a case study applying the DMAIC/TAM model to Ireland’s largest dairy processing site to optimise the annual maintenance shutdown. The objective was to deliver a 30% reduction in the duration of the overhaul, enabling an extension of the processing season.

Findings

Application of the DMAIC/TAM hybrid resulted in process enhancements, employee engagement and a clear roadmap for the operations team. Project goals were delivered, and original objectives exceeded, resulting in €8.9m additional value to the business and a reduction of 36% in the duration of the overhaul.

Practical implications

The results demonstrate that the model provides a structure that promotes systematic working and a continuous improvement focus that can have substantial benefits for wider industry. Opportunities for further model refinement were identified and will enhance performance in subsequent overhauls.

Originality/value

To the best of the authors’ knowledge, this is the first time that the structure and tools of DMAIC and TAM have been combined into a hybrid methodology and applied in an Irish industrial setting.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 17 September 2024

Nzita Alain Lelo, P. Stephan Heyns and Johann Wannenburg

Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP…

Abstract

Purpose

Steam explosions are a major safety concern in many modern furnaces. The explosions are sometimes caused by water ingress into the furnace from leaks in its high-pressure (HP) cooling water system, coming into contact with molten matte. To address such safety issues related to steam explosions, risk based inspection (RBI) is suggested in this paper. RBI is presently one of the best-practice methodologies to provide an inspection schedule and ensure the mechanical integrity of pressure vessels. The application of RBIs on furnace HP cooling systems in this work is performed by incorporating the proportional hazards model (PHM) with the RBI approach; the PHM uses real-time condition data to allow dynamic decision-making on inspection and maintenance planning.

Design/methodology/approach

To accomplish this, a case study is presented that applies an HP cooling system data with moisture and cumulated feed rate as covariates or condition indicators to compute the probability of failure and the consequence of failure (CoF), which is modelled based on the boiling liquid-expanding vapour explosion (BLEVE) theory.

Findings

The benefit of this approach is that the risk assessment introduces real-time condition data in addition to time-based failure information to allow improved dynamic decision-making for inspection and maintenance planning of the HP cooling system. The work presented here comprises the application of the newly proposed methodology in the context of pressure vessels, considering the important challenge of possible explosion accidents due to BLEVE as the CoF calculations.

Research limitations/implications

This paper however aims to optimise the inspection schedule on the HP cooling system, by incorporating PHM into the RBI methodology, as was recently proposed in the literature by Lelo et al. (2022). Moisture and cumulated feed rate are used as covariate. At the end, risk mitigation policy is suggested.

Originality/value

In this paper, the proposed methodology yields a dynamically calculated quantified risk, which emphasised the imperative for mitigating the risk, as well as presents a number of mitigation options, to quantifiably affect such mitigation.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 28 June 2024

Leanne Johnstone

From a firm-centric perspective, this study aims to elaborate on the types of servitisation strategies that can support a firm’s circular ambitions by asking: What is the role of…

Abstract

Purpose

From a firm-centric perspective, this study aims to elaborate on the types of servitisation strategies that can support a firm’s circular ambitions by asking: What is the role of servitisation in narrowing, slowing and/or closing resource loops? And, how are resources and capabilities arranged to provide such strategic circular service offerings?

Design/methodology/approach

Drawing on the experiences of an international manufacturing company from a dynamic capabilities perspective, the study offers an analytical framework that goes inside the firm’s operationalisation of its service offerings to support circularity in terms of the strategic decisions made. This framework is later used to frame the findings.

Findings

The study highlights the case-specific feedback loops and capabilities needed to support circular transitions. Various resource and innovation strategies for circularity are combined along customer interfaces and in partnership with upstream actors. Yet, open innovation strategies are conditioned by physical distance to provide circular services in remote areas.

Research limitations/implications

The main contributions are empirical, analytical, conceptual and practical. The servitisation framework for circularity connects prior servitisation-circularity research and provides an analytical tool for framing future studies. The study also expands the definition of open innovation in that closed innovations for circularity can be achieved through “open” information exchange in knowledge networks, as well as provides advice for similar large manufacturing companies.

Originality/value

This study focuses on the strategic choices made by industrial firms for circular service provision and emphasises the environmental benefits from such choices, in addition to the economic and customer benefits covered in extant servitisation research.

Article
Publication date: 23 September 2024

Pedro Mêda, Eilif Hjelseth, Diego Calvetti and Hipólito Sousa

This study explores the significance and implementation priorities for Digital Product Passports (DPP) in the context of building renovation projects. It aims to reveal…

Abstract

Purpose

This study explores the significance and implementation priorities for Digital Product Passports (DPP) in the context of building renovation projects. It aims to reveal bottlenecks and how a data-driven workflow bridges the DPP understanding/implementation gap, facilitating the transition towards practices aligned with the EU Green Deal goals.

Design/methodology/approach

A mixed-methods embedded design was employed for a real-case study exploration. Desk research and field observations ground the two-level analysis combining project documentation, namely the Bill of Quantities (BoQ), with different criteria in digitalisation and sustainability, such as economic ratio, 3D modelling, waste management, hazards, energy performance and facility management. All results were interpreted from the DPP lens.

Findings

The analysis revealed a system for identifying building products representing a significant part of the renovation budget. About 11 priority DPPs were found. Some are crucial for both the deconstruction and construction phases, highlighting the need for an incremental and strategic approach to DPP implementation.

Research limitations/implications

The study is limited to a single case study. Constraints are minimised given the sample's archetype representativeness. The outcomes introduce the need for strategic thinking for incremental DPP implementation. Future research will explore additional criteria and cases.

Originality/value

The research has resulted in a classification framework for DPPs' significance and priority, which is provided with case results. The outcome of the framework provides views on concept alignment to make the implementation in construction more straightforward. Its practical use can be replicated in other projects, emphasizing the importance of data structure and management for the circular economy.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 September 2024

Mohammad Yaghtin and Youness Javid

The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup…

Abstract

Purpose

The purpose of this research is to address the complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance. The primary goal is to minimize total tardiness, earliness and total completion times simultaneously. This study aims to provide effective solution methods, including a Mixed-Integer Programming (MIP) model, an Epsilon-constraint method and the Nondominated Sorting Genetic Algorithm (NSGA-II), to offer valuable insights into solving large-sized instances of this challenging problem.

Design/methodology/approach

This study addresses a multiobjective unrelated parallel machine scheduling problem with sequence-dependent setup times and periodic machine maintenance activities. An MIP model is introduced to formulate the problem, and an Epsilon-constraint method is applied for a solution. To handle the NP-hard nature of the problem for larger instances, an NSGA-II is developed. The research involves the creation of 45 problem instances for computational experiments, which evaluate the performance of the algorithms in terms of proposed measures.

Findings

The research findings demonstrate the effectiveness of the proposed solution approaches for the multiobjective unrelated parallel machine scheduling problem. Computational experiments on 45 generated problem instances reveal that the NSGA-II algorithm outperforms the Epsilon-constraint method, particularly for larger instances. The algorithms successfully minimize total tardiness, earliness and total completion times, showcasing their practical applicability and efficiency in handling real-world scheduling scenarios.

Originality/value

This study contributes original value by addressing a complex multiobjective unrelated parallel machine scheduling problem with real-world constraints, including sequence-dependent setup times and periodic machine maintenance activities. The introduction of an MIP model, the application of the Epsilon-constraint method and the development of the NSGA-II algorithm offer innovative approaches to solving this NP-hard problem. The research provides valuable insights into efficient scheduling methods applicable in various industries, enhancing decision-making processes and operational efficiency.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 20 September 2024

Yuntao Wu, Along Liu and Jibao Gu

How does business model design play a role in enabling manufacturing firms’ services? This study aims to investigate the impact of two distinct types of business model design…

Abstract

Purpose

How does business model design play a role in enabling manufacturing firms’ services? This study aims to investigate the impact of two distinct types of business model design, namely, efficiency-centered business model design (EBMD) and novelty-centered business model design (NBMD), and their effects in balanced and imbalanced configurations, on two types of services: product- and customer-oriented services.

Design/methodology/approach

Using matched survey data of 390 top managers and objective performance data of 195 Chinese manufacturing firms, this study uses hierarchical regression, polynomial regression and response surface analysis to test the hypotheses.

Findings

The results show that while EBMD positively affects product-oriented services, NBMD positively affects customer-oriented services. Both types of services exert a significant influence on firm performance. Furthermore, the degree of product- and customer-oriented services increases with an increasing effort level with a balance between EBMD and NBMD. Asymmetrical, imbalanced configuration effects reveal that the degree of product-oriented services is higher when the EBMD effort exceeds the NBMD effort, and the degree of customer-oriented services is higher when the NBMD effort exceeds the EBMD effort.

Originality/value

This study enriches the understanding of designing business models to facilitate service growth in manufacturing firms, ultimately benefiting firm performance. In addition, exploring balanced and imbalanced configurations of EBMD and NBMD offers new insights into business model dual design research.

Details

Journal of Business & Industrial Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0885-8624

Keywords

Open Access
Article
Publication date: 28 February 2024

Hassan Th. Alassafi, Khalid S. Al-Gahtani, Abdulmohsen S. Almohsen and Abdullah M. Alsugair

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues…

Abstract

Purpose

Heating, ventilating, air-conditioning and cooling (HVAC) systems are crucial in daily health-care facility services. Design-related defects can lead to maintenance issues, causing service disruptions and cost overruns. These defects can be avoided if a link between the early design stages and maintenance feedback is established. This study aims to use experts’ experience in HVAC maintenance in health-care facilities to list and evaluate the risk of each maintenance issue caused by a design defect, supported by the literature.

Design/methodology/approach

Following semistructured interviews with experts, 41 maintenance issues were identified as the most encountered issues. Subsequently, a survey was conducted in which 44 participants evaluated the probability and impact of each design-caused issue.

Findings

Chillers were identified as the HVAC components most prone to design defects and cost impact. However, air distribution ducts and air handling units are the most critical HVAC components for maintaining healthy conditions inside health-care facilities.

Research limitations/implications

The unavailability of comprehensive data on the cost impacts of all design-related defects from multiple health-care facilities limits the ability of HVAC designers to furnish case studies and quantitative approaches.

Originality/value

This study helps HVAC designers acquire prior knowledge of decisions that may have led to unnecessary and avoidable maintenance. These design-related maintenance issues may cause unfavorable health and cost consequences.

Article
Publication date: 23 May 2023

Minggong Zhang, Xiaolong Xue, Ting Luo, Mengmeng Li and Xiaoling Tang

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a…

Abstract

Purpose

This study aims to establish an evaluation method for cross-regional major infrastructure project (CRMIP) supportability. The focus is to identify evaluation indicators from a complexity perspective and develop an evaluation model using qualitative and quantitative methods. Case studies are carried out to verify the reliability of the evaluation model, thereby providing theoretical and practical guidance for CRMIP operations and maintenance (O&M).

Design/methodology/approach

Guided by the idea of complexity management, the evaluation indicators of CRMIP supportability are determined through literature analysis, actual O&M experience and expert interviews. A combination of qualitative and quantitative methods, consisting of sequential relationship analysis, entropy weighting, game theory and cloud model, is developed to determine the indicator weights. Finally, the evaluation model is used to evaluate the supportability of the Hong Kong–Zhuhai–Macao Bridge (HZMB), which tests the rationality of the model and reveals its supportability level.

Findings

The results demonstrate that CRMIPs' supportability is influenced by 6 guideline-level and 18 indicator-level indicators, and the priority of the influencing factors includes “organization,” “technology,” “system,” “human resources,” “material system,” and “funding.” As for specific indicators, “organizational objectives,” “organizational structure and synergy mechanism,” and “technical systems and procedures” are critical to CRMIPs' O&M supportability. The results also indicate that the supportability level of the HZMB falls between good and excellent.

Originality/value

Under the guidance of complexity management thinking, this study proposes a supportability evaluation framework based on the combined weights of game theory and the cloud model. This study provides a valuable reference and scientific judgment for the health and safety of CRMIPs' O&M.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 1 December 2023

Lina Gharaibeh, Sandra Matarneh, Kristina Eriksson and Björn Lantz

This study aims to present a state-of-the-art review of building information modelling (BIM) in the Swedish construction practice with a focus on wood construction. It focuses on…

Abstract

Purpose

This study aims to present a state-of-the-art review of building information modelling (BIM) in the Swedish construction practice with a focus on wood construction. It focuses on examining the extent, maturity and actual practices of BIM in the Swedish wood construction industry, by analysing practitioners’ perspectives on the current state of BIM and its perceived benefits.

Design/methodology/approach

A qualitative approach was selected, given the study’s exploratory character. Initially, an extensive review was undertaken to examine the current state of BIM utilisation and its associated advantages within the construction industry. Subsequently, empirical data were acquired through semi-structured interviews featuring open-ended questions, aimed at comprehensively assessing the prevailing extent of BIM integration within the Swedish wood construction sector.

Findings

The research concluded that the wood construction industry in Sweden is shifting towards BIM on different levels, where in some cases, the level of implementation is still modest. It should be emphasised that the wood construction industry in Sweden is not realising the full potential of BIM. The industry is still using a combination of BIM and traditional methods, thus, limiting the benefits that full BIM implementation could offer the industry.

Originality/value

This study provided empirical evidence on the current perceptions and state of practice of the Swedish wood construction industry regarding BIM maturity.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 309