Search results

1 – 10 of over 136000
Article
Publication date: 14 April 2022

Ahmad Chihadeh and Michael Kaliske

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to…

Abstract

Purpose

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to consider the bond behavior between the reinforcement and the continuum.

Design/methodology/approach

The embedded approach is used for coupling reinforcement bars with continuum elements. This description is achieved by coupling continuum elements in the background mesh to the reinforcement bars, which are described using truss- finite elements. The coupling is implemented between the truss elements and the continuum elements in the background mesh through bond elements that allow for freely distributed truss elements independent of the continuum element discretization. The bond elements allow for modeling the bond behavior between the reinforcement and the continuum.

Findings

The paper introduces a novel method to include the reinforcement bars in the MPM applications. The reinforcement bars can be modeled without any constraints with a bond-slip constitutive model being considered.

Originality/value

As modeling of reinforced materials is required in a wide range of applications, a method to include the reinforcement into the MPM framework is required. The proposed approach allows for modeling reinforced material within MPM applications.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 February 2022

Guilin Wang, Fan Sun, Runqiu Wang, Liang Zhang, Tianci Cao and Boyi Li

The material point method (MPM)is a particle-based numerical method suitable for solid–liquid simulation and large deformation problems. However, MPM is generally used in solid…

288

Abstract

Purpose

The material point method (MPM)is a particle-based numerical method suitable for solid–liquid simulation and large deformation problems. However, MPM is generally used in solid deformation at present, to develop a multi-physics coupling MPM; the purpose of this study is to extend the MPM to simulate the heat and fluid flow and address the thermal-hydrological (TH) coupling problems.

Design/methodology/approach

The porous medium was discretized into two sets of Lagrangian points, and the motion of fluid points follows the Darcy’s law. Two sets of heat transport equations were established for the heat conduction and heat exchange in the pore fluid and solid skeleton. Fractures were considered by adding the porosity gradient term in the governing equations; also a transition function was introduced to smoothen the fracture boundary.

Findings

Four cases of heat and fluid flow in porous medium and fractures were presented to verify the feasibility of the proposed method. And the effects of fractures on heat and fluid flow were investigated. Additionally, a case of geothermal extraction was solved and the importance of the interstitial convective heat transfer coefficient was analyzed.

Originality/value

The proposed method extends the conventional MPM, using two sets of material points and two sets of heat transport equations to simulate the heat and fluid flow and address the TH coupling problems, which can be applied in both porous medium and fractures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 January 2020

Xiaomin Zhou and Zheng Sun

The purpose of this paper is to provide an effective way to assess landslide risk quantitatively. Quantitative assessment plays an important role in mitigating the landslide risk…

Abstract

Purpose

The purpose of this paper is to provide an effective way to assess landslide risk quantitatively. Quantitative assessment plays an important role in mitigating the landslide risk and developing a landslide risk-based warning system. However, efficient risk assessment on the large deformation failure process of slope with spatially variable soils is a challenging problem.

Design/methodology/approach

Combining the Monte Carlo simulation (MCS) and the higher-order material point method – the B-spline Material Point Method (BSMPM) – the concept of MC-BSMPM to assess the landslide risk quantitatively is proposed in this paper. The overall dynamic evolution of soil slope failure has been simulated by the BSMPM, and the probability density function of the sliding duration, the sliding kinematic energy, the sliding mass and the sliding distance of the landslide are obtained based on the MCS. Through the four risk assessment parameters of the sliding duration, the sliding kinematic energy, the sliding mass and the sliding distance, the landslide risk could be assessed quantitatively.

Findings

It is found that the post-failure behavior of the landslide conforms well to a normal distribution as the soil physical parameter is in a normal distribution. The variation of soil’s shear strength affects the dynamic motion of the landslide greatly.

Originality/value

The result shows that the landslide hazard cannot be estimated comprehensively by the deterministic BSMPM, while the landslide risk could be more clearly understood and quantitatively assessed with more details by the proposed method, which demonstrates that the MC-BSMPM method is an effective way to assess the landslide risk quantitatively.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 April 2020

Duc Hai Nguyen, Hu Wang, Fan Ye and Wei Hu

The purpose of this paper is to investigate the mechanical properties’ behaviors of woven composite cut-out structures with specific parameters. Because of the complexity of…

Abstract

Purpose

The purpose of this paper is to investigate the mechanical properties’ behaviors of woven composite cut-out structures with specific parameters. Because of the complexity of micro-scale and meso-scale structure, it is difficult to accurately predict the mechanical material behavior of woven composites. Numerical simulations are increasingly necessary for the design and optimization of test procedures for composite structures made by the woven composite. The results of the proposed method are well satisfied with the results obtained from the experiment and other studies. Moreover, parametric studies on different plates based on the stacking sequences are investigated.

Design/methodology/approach

A multi-scale modeling approach is suggested. Back-propagation neural networks (BPNN), radial basis function (RBF) and least square support vector regression are integrated with efficient global optimization (EGO) to reduce the weight of assigned structure. Optimization results are verified by finite element analysis.

Findings

Compared with other similar studies, the advantage of the suggested strategy uses homogenized properties behaviors with more complex analysis of woven composite structures. According to investigation results, it can be found that 450/−450 ply-orientation is the best buckling load value for all the cut-out shape requirements. According to the optimal results, the BPNN-EGO is the best candidate for the EGO to optimize the woven composite structures.

Originality/value

A multi-scale approach is used to investigate the mechanical properties of a complex woven composite material architecture. Buckling of different cut-out shapes with the same area is surveyed. According to investigation, 45°/−45° ply-orientation is the best for all cut-out shapes. Different surrogate models are integrated in EGO for optimization. The BPNN surrogate model is the best choice for EGO to optimization difficult problems of woven composite materials.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2015

Chun Feng, Shi-hai Li and Eugenio Onate

Continuum-based discrete element method is an explicit numerical method, which is a combination of block discrete element method (DEM) and FEM. When simulating large deformation…

Abstract

Purpose

Continuum-based discrete element method is an explicit numerical method, which is a combination of block discrete element method (DEM) and FEM. When simulating large deformation problems, such as cutting, blasting, water-like material flowing, the distortion of elements will lead to no convergence of the numerical system. To solve the convergence problem, a particle contact-based meshfree method (PCMM) is introduced in. The paper aims to discuss this issue.

Design/methodology/approach

PCMM is based on traditional particle DEM, and use particle contacts to generate triangular elements. If three particles are contact with each other, the element will be created. Once elements are created, the macroscopic constitutive law could be introduced in. When large deformation of element occurs, the contact relationship between particles will be changed. Those elements that do not meet the contact condition will be deleted, and new elements that coincide with the relationship will be generated. By the deletion and creation of elements, the convergence problem induced by element distortion will be eliminated. To solve FEM and PCMM coupled problems, a point-edge contact model is introduced in, and normal and tangential springs are adopted to transfer the contact force between particles and blocks.

Findings

According to the deletion and recreation of elements based on particle contacts, PCMM could simulate large deformation problems. Some numerical cases (i.e. elastic field testing, uniaxial compression analysis and wave propagation simulation) show the accuracy of PCMM, and others (i.e. soil cutting, contact burst and water-like material flowing) show the rationality of PCMM.

Originality/value

In traditional particle DEM, contact relationships are used to calculate contact forces. But in PCMM, contact relationships are adopted to generate elements. Compared to other meshfree methods, in PCMM, the element automatic deletion and recreation technique is used to solve large deformation problems.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 July 2019

Xiang Chen and Xiong Zhang

The simulation of the fluid–solid interaction (FSI) problem is important for both academic studies and engineering applications. However, the numerical approach for simulating the…

Abstract

Purpose

The simulation of the fluid–solid interaction (FSI) problem is important for both academic studies and engineering applications. However, the numerical approach for simulating the FSI problems is a great challenge owing to the large discrepancy of material properties and inconsistent description of grid motion between the fluid and solid domains. The difficulties will be further increased if there are multiple materials in the fluid region. In these complicated applications, interface reconstruction, multi-material advection and FSI must be all taken into account. This paper aims to present an effective integrated work of multi-material arbitrary Lagrangian Eulerian (MMALE) method, finite element (FE) method and the continuum analogy method to simulate the complex FSI problems involving multi-material flow. The coupled method is used to simulate the three-dimensional CONT test and the blast-plate interaction. The numerical results show good agreement with the benchmark and the experiment data, which indicates that the presented method is effective for solving the complicated FSI problems.

Design/methodology/approach

MMALE and FE methods are used to simulate fluid and solid regions, respectively. The interfacial nodes of fluid and solid are required to be coincident in the whole simulation so the interacted force can be easily and accurately calculated. To this end, the continuum analogy method is used in the rezoning phase.

Findings

The coupled method is used to simulate the three-dimensional CONT test and the blast-plate interaction. The numerical results show good agreement with the benchmark and the experiment data, which indicates that the presented method is effective for solving the complicated FSI problems.

Originality/value

To the best of the authors’ knowledge, this is the first time that the ALE method, moment of fluid interface reconstruction method, continuum analogy method and the FE method are combined to solve complicated practical problems.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 August 2019

Wei-Hai Yuan, Wei Zhang, Beibing Dai and Yuan Wang

Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising…

385

Abstract

Purpose

Large deformation problems are frequently encountered in various fields of geotechnical engineering. The particle finite element method (PFEM) has been proven to be a promising method to solve large deformation problems. This study aims to develop a computational framework for modelling the hydro-mechanical coupled porous media at large deformation based on the PFEM.

Design/methodology/approach

The PFEM is extended by adopting the linear and quadratic triangular elements for pore water pressure and displacements. A six-node triangular element is used for modelling two-dimensional problems instead of the low-order three-node triangular element. Thus, the numerical instability induced by volumetric locking is avoided. The Modified Cam Clay (MCC) model is used to describe the elasto-plastic soil behaviour.

Findings

The proposed approach is used for analysing several consolidation problems. The numerical results have demonstrated that large deformation consolidation problems with the proposed approach can be accomplished without numerical difficulties and loss of accuracy. The coupled PFEM provides a stable and robust numerical tool in solving large deformation consolidation problems. It is demonstrated that the proposed approach is intrinsically stable.

Originality/value

The PFEM is extended to consider large deformation-coupled hydro-mechanical problem. PFEM is enhanced by using a six-node quadratic triangular element for displacement and this is coupled with a four-node quadrilateral element for modelling excess pore pressure.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1994

A. Huerta and F. Casadei

The arbitrary Lagrangian—Eulerian (ALE)formulation, which is already well established in the hydrodynamics andfluid‐structure interaction fields, is extended to materials

Abstract

The arbitrary Lagrangian—Eulerian (ALE) formulation, which is already well established in the hydrodynamics and fluid‐structure interaction fields, is extended to materials with memory, namely, non‐ linear path‐dependent materials. Previous attempts to treat non‐ linear solid mechanics with the ALE description have, in common, the implicit interpolation technique employed. Obviously, this implies a numerical burden which may be uneconomical and may induce to give up this formulation, particularly in fast‐transient dynamics where explicit algorithms are usually employed. Here, several applications are presented to show that if adequate stress updating techniques are implemented, the ALE formulation could be much more competitive than classical Lagrangian computations when large deformations are present. Moreover, if the ALE technique is interpreted as a simple interpolation enrichment, adequate—in opposition to distorted or locally coarse—meshes are employed. Notice also that impossible computations (or at least very involved numerically) with a Lagrangian code are easily implementable in an ALE analysis. Finally, it is important to observe that the numerical examples shown range from a purely academic test to real engineering simulations. They show the effective applicability of this formulation to non‐linear solid mechanics and, in particular, to impact, coining or forming analysis.

Article
Publication date: 1 May 1982

Carol Tenopir

The University of Illnois Information Retrieval Research Laboratory contracted with the United States Federal Emergency Management Agency (FEMA) to identify and analyze…

Abstract

The University of Illnois Information Retrieval Research Laboratory contracted with the United States Federal Emergency Management Agency (FEMA) to identify and analyze word‐oriented databases of potential relevance to FEMA. A subject profile technique was used to measure how many potentially relevant citations were found in selected databases, thus allowing a ranking and comparison of databases for the multidisciplinary field of emergency management. “Distribution of Citations in Databases in a Multidisciplinary Field” describes the ranking of databases relevant to emergency management and demonstrates the applicability of Bradford's law of scatter to citations in databases. This article describes an experiment to compare the subject profile technique used in the FEMA project to another common database coverage evaluation technique — the ‘bibliography’ or ‘review article’ technique. Although the two techniques have slightly different purposes, they can both be used to compare the coverage of databases in a particular subject area. This study shows the subject profile technique to be less costly and less time consuming.

Details

Online Review, vol. 6 no. 5
Type: Research Article
ISSN: 0309-314X

Article
Publication date: 4 July 2023

Jiayu Qin, Nengxiong Xu and Gang Mei

In this paper, the smoothed point interpolation method (SPIM) is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling…

Abstract

Purpose

In this paper, the smoothed point interpolation method (SPIM) is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling the large-scale nonlinear deformation problems of geological bodies.

Design/methodology/approach

In this paper, the SPIM is used to model the slope deformation. However, the computational efficiency of SPIM is not satisfying when modeling the large-scale nonlinear deformation problems of geological bodies.

Findings

A simple slope model with different mesh sizes is used to verify the performance of the efficient face-based SPIM. The first accelerating strategy greatly enhances the computational efficiency of solving the large-scale slope deformation. The second accelerating strategy effectively improves the convergence of nonlinear behavior that occurred in the slope deformation.

Originality/value

The designed efficient face-based SPIM can enhance the computational efficiency when analyzing large-scale nonlinear slope deformation problems, which can help to predict and prevent potential geological hazards.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 136000