Search results

1 – 10 of 174
Article
Publication date: 17 June 2020

Tiago Oliveira, Wilber Vélez and Artur Portela

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Abstract

Purpose

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Design/methodology/approach

In the local domain, assigned to each node of a discretization, the work theorem establishes an energy relationship between a statically admissible stress field and an independent kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed as an integral local form. Based on the independence of the stress and strain fields, this local form of the work theorem is kinematically formulated with a simple rigid-body displacement to be applied by local meshfree and finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form that implements a quite simple algorithm with no further integration required.

Findings

The reduced integration, performed by this linearly integrated formulation, plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal stiffness which, in turn, leads to an increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal integration methods without stabilization. As a consequence of using such a convenient linearly integrated local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three benchmark problems were analyzed with these techniques, in order to assess the accuracy and efficiency of the new integrated local formulations of meshfree and finite element numerical methods. The results obtained in this work are in perfect agreement with those of the available analytical solutions and, furthermore, outperform the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical methods presented in this paper make this a very reliable and robust formulation.

Originality/value

Presentation of a new local mesh-free numerical method. The method, linearly integrated along the boundary of the local domain, implements an algorithm with no further integration required. The method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-fast computations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 June 2019

Ram Jiwari, Sanjay Kumar and R.C. Mittal

The purpose of this paper is to develop two meshfree algorithms based on multiquadric radial basis functions (RBFs) and differential quadrature (DQ) technique for numerical…

Abstract

Purpose

The purpose of this paper is to develop two meshfree algorithms based on multiquadric radial basis functions (RBFs) and differential quadrature (DQ) technique for numerical simulation and to capture the shocks behavior of Burgers’ type problems.

Design/methodology/approach

The algorithms convert the problems into a system of ordinary differential equations which are solved by the Runge–Kutta method.

Findings

Two meshfree algorithms are developed and their stability is discussed. Numerical experiment is done to check the efficiency of the algorithms, and some shock behaviors of the problems are presented. The proposed algorithms are found to be accurate, simple and fast.

Originality/value

The present algorithms LRBF-DQM and GRBF-DQM are based on radial basis functions, which are new for Burgers’ type problems. It is concluded from the numerical experiments that LRBF-DQM is better than GRBF-DQM. The algorithms give better results than available literature.

Article
Publication date: 10 January 2020

Shi Yang Pan, Jing Cheng and Tong Chun Li

The meshfree node-based smoothed point interpolation method (NS-PIM) is extended to the forward and inversion analysis of a high gravelly soil core rock-fill dam during…

Abstract

Purpose

The meshfree node-based smoothed point interpolation method (NS-PIM) is extended to the forward and inversion analysis of a high gravelly soil core rock-fill dam during construction periods.

Design/methodology/approach

As one member of the meshfree methods, the NS-PIM has the advantages of “softer” stiffness and adaptability to large deformations which is quite indispensable for the stability analysis of rock-fill dams. In this work, the present method contains a reconstruction procedure to deal with the existence or nonexistence of the construction layers. After verifying the validity of the NS-PIM method for nonlinear elastic model during construction period, the convergence features of the NS-PIM and FEM methods are further investigated with different mesh schemes. Furthermore, the NS-PIM and FEM methods are applied for the forward analysis of a high gravelly soil core rock-fill dam and the convergence features under complex stress conditions are also studied using the rock-fill dam model. Finally, the NS-PIM method is used to calculate the Duncan–Chang parameters of the deep overburden under the high gravelly soil core rock-fill dam based on the back-propagation neural network method.

Findings

The results show that: the NS-PIM solution for construction analysis still possesses the property of upper bound solution even under complex stress conditions and can provide comparatively more conservative results for safety evaluation. Furthermore, it can be used to evaluate the accuracy of results and mesh quality together with the FEM solution which has the property of lower bound solution; the inversion analysis in this work provides a set of material parameters for the deep overburden under high rock-fill dam during construction period and the calculated results show good agreement with the measured displacement values and it is feasible to apply the NS-PIM to the forward and inversion analysis of high rock-fill dams on deep overburden during construction periods.

Research limitations/implications

In further study, the feasibility of three-dimensional problems, elastic–plastic problems, contact problems and multipoint inversion can still be probed in the NS-PIM solution for the forward and inversion analysis of high rock-fill dams on deep overburden.

Practical implications

This paper introduced a method for the forward and inversion analysis of high rock-fill dams during construction period using the NS-PIM solution. The property of upper bound solution ensures that the NS-PIM can provide more conservative results for safety evaluation. The inversion analysis in this work provides a set of material parameters for the deep overburden under high rock-fill dam during construction periods.

Originality/value

First, the analysis from forward to inversion for high rock-fill dams during construction period using the NS-PIM solution is accomplished in this work. A procedure dealing with the existence or nonexistence of the construction layers is also developed for the construction analysis. Second, it is confirmed in this work that the NS-PIM still possesses the property of upper bound solution even under complex stress conditions (the forward analysis of high rock-fill dams during construction period). Thus, more conservative results can be provided for safety evaluation. Furthermore, it can be used to evaluate the accuracy of results and mesh quality together with the FEM solution which has the property of lower bound solution. Third, the calculated material parameters of the deep overburden in this work can be used for further studies of the high rock-fill dam.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2019

Wenan Wu and Hong Zheng

This study aims to introduce the hybrid finite element (FE) – meshfree method and multiscale variational principle into the traditional mixed FE formulation, leading to a stable…

Abstract

Purpose

This study aims to introduce the hybrid finite element (FE) – meshfree method and multiscale variational principle into the traditional mixed FE formulation, leading to a stable mixed formulation for incompressible linear elasticity which circumvents the need to satisfy inf-sup condition.

Design/methodology/approach

Using the hybrid FE–meshfree method, the displacement and pressure are interpolated conveniently with the same order so that a continuous pressure field can be obtained with low-order elements. The multiscale variational principle is then introduced into the Galerkin form to obtain stable and convergent results.

Findings

The present method is capable of overcoming volume locking and does not exhibit unphysical oscillations near the incompressible limit. Moreover, there are no extra unknowns introduced in the present method because the fine-scale unknowns are eliminated using the static condensation technique, and there is no need to evaluate any user-defined stability parameter as the classical stabilization methods do. The shape functions constructed in the present model possess continuous derivatives at nodes, which gives a continuous and more precise stress field with no need of an additional smooth process. The shape functions in the present model also possess the Kronecker delta property, so that it is convenient to impose essential boundary conditions.

Originality/value

The proposed model can be implemented easily. Its convergence rates and accuracy in displacement, energy and pressure are even comparable to those of second-order mixed elements.

Article
Publication date: 10 May 2019

Rituraj Singh and Krishna Mohan Singh

The purpose of this paper is to assess the performance of the stabilised moving least squares (MLS) scheme in the meshless local Petrov–Galerkin (MLPG) method for heat conduction…

Abstract

Purpose

The purpose of this paper is to assess the performance of the stabilised moving least squares (MLS) scheme in the meshless local Petrov–Galerkin (MLPG) method for heat conduction method.

Design/methodology/approach

In the current work, the authors extend the stabilised MLS approach to the MLPG method for heat conduction problem. Its performance has been compared with the MLPG method based on the standard MLS and local coordinate MLS. The patch tests of MLS and modified MLS schemes have been presented along with the one- and two-dimensional examples for MLPG method of the heat conduction problem.

Findings

In the stabilised MLS, the condition number of moment matrix is independent of the nodal spacing and it is nearly constant in the global domain for all grid sizes. The shifted polynomials based MLS and stabilised MLS approaches are more robust than the standard MLS scheme in the MLPG method analysis of heat conduction problems.

Originality/value

The MLPG method based on the stabilised MLS scheme.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 April 2015

Sonam Singh and Rama Bhargava

The purpose of this paper is to study the flow and heat transfer characteristics of a phase transition, melting problem. In this problem, phase transition between solid and liquid…

Abstract

Purpose

The purpose of this paper is to study the flow and heat transfer characteristics of a phase transition, melting problem. In this problem, phase transition between solid and liquid takes place within a square enclosure in the presence of natural convection.

Design/methodology/approach

The physical problem, described with non-linear partial differential equations, is simulated using a hybrid finite element and element free Galerkin method (FEM/EFGM) approach. In energy conservation equation, the fixed-domain, effective heat capacity method is used to take into account the latent heat of phase change. The governing partial differential equations are solved with a meshfree, EFGM near the phase transition front while in the region away from the front with uniform nodal distribution; problem is simulated with traditional FEM.

Findings

A sensitivity analysis of characteristic dimensionless numbers Rayleigh number (Ra), Prandtl number (Pr), Stefan number (ste) is presented in order to investigate their impact on thermal and flow fields. Typically computational times of EFGM are higher than that of FEM. Therefore, by using EFGM only in that portion of physical problem where phase transition occurs, the hybrid FEM/EFGM strategy employed in present paper could reduce the computational time of EFGM while still retaining its accuracy. Also, the consistent performance of the results obtained with this hybrid approach is validated with those already available in literature for some special cases.

Originality/value

The hybrid methodology adopted in this paper, is quite new for solving such type of phase transition problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 June 2015

Jiaru Shao, Shangming Li, Zirui Li and Moubin Liu

The purpose of this paper is to investigate different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation and to find out the optimal…

Abstract

Purpose

The purpose of this paper is to investigate different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation and to find out the optimal selection of sloshing mitigation for practical applications.

Design/methodology/approach

The numerical study is conducted by using a proven improved smoothed particle hydrodynamics (SPH), which is convenient in tracking free surfaces and capable of obtaining smooth and correct pressure field.

Findings

Liquid sloshing effects in a rectangular tank with vertical middle baffles, horizontal baffles, T-shape baffles and porous baffles are investigated together with those without any baffles. It is found that the existence of baffles can mitigate sloshing effects and the mitigation performance depends on the shape, structure and location of the baffles. Considering the balance of sloshing mitigation performance and the complexity in structure and design, the I shaped and T shaped baffles can be good choices to mitigate sloshing effects.

Practical implications

The presented methodology and findings can be helpful in practical engineering applications, especially in ocean engineering and problems with large sloshing effects.

Originality/value

The SPH method is a meshfree, Lagrangian particle method, and therefore it is an attractive approach for modeling liquid sloshing with material interfaces, free surfaces and moving boundaries. In most previous literature, only simple baffles are investigated. In this paper, more complicated baffles are investigated, which can be helpful in practical applications and engineering designs.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 August 2021

Mostafa Abbaszadeh, Hossein Pourbashash and Mahmood Khaksar-e Oshagh

This study aims to propose a new numerical method for solving non-linear partial differential equations on irregular domains.

Abstract

Purpose

This study aims to propose a new numerical method for solving non-linear partial differential equations on irregular domains.

Design/methodology/approach

The main aim of the current paper is to propose a local meshless collocation method to solve the two-dimensional Klein-Kramers equation with a fractional derivative in the Riemann-Liouville sense, in the time term. This equation describes the sub-diffusion in the presence of an external force field in phase space.

Findings

First, the authors use two finite difference schemes to discrete temporal variables and then the radial basis function-differential quadrature method has been used to estimate the spatial direction. To discrete the time-variable, the authors use two different strategies with convergence orders O(τ1+γ) and O(τ2γ) for 0 < γ < 1. Finally, some numerical examples have been presented to show the high accuracy and acceptable results of the proposed technique.

Originality/value

The proposed numerical technique is flexible for different computational domains.

Article
Publication date: 5 May 2015

Jun Lin, Hakim Naceur, Daniel Coutellier and Abdel Laksimi

– The purpose of this paper is to present an efficient smoothed particle hydrodynamics (SPH) method particularly adapted for the geometrically nonlinear analysis of structures.

Abstract

Purpose

The purpose of this paper is to present an efficient smoothed particle hydrodynamics (SPH) method particularly adapted for the geometrically nonlinear analysis of structures.

Design/methodology/approach

In order to resolve the inconsistency phenomenon which systematically occurs in the standard SPH method at the domain’s boundaries of the studied structure, the classical kernel function and its spatial derivatives were modified by the use of Taylor series expansion. The well-known tensile instabilities inherent to the Eulerian SPH formulation were attenuated by the use of the Total Lagrangian Formulation (TLF).

Findings

In order to demonstrate the effectiveness of the present improved SPH method, several numerical applications involving geometrically nonlinear behaviors were carried out using the explicit dynamics scheme for the time integration of the PDEs. Comparisons of the obtained results using the present SPH model with analytical reference solutions and with those obtained using ABAQUS finite element (FE) commercial software, show its good accuracy and robustness.

Practical implications

An additional application including a multilayered composite structure and involving buckling and delamination was investigated using the present improved SPH model and the results are compared to the FE results, they confirmed both the efficiency and the accuracy of the proposed method.

Originality/value

An efficient 2D-continuum SPH model for the geometrically nonlinear analysis of thin and thick structures is proposed. Contrarily to the classical SPH approaches, here the constitutive material relations are used to link naturally the stresses and strains. The Total Lagrangian approach is investigated to alleviate the tensile instabilities problem, allowing at the same time to avoid the updating procedure of the neighboring particles search and therefore reducing CPU usage. The proposed approach is valid for isotropic and multilayered composites structures undergoing large transformations. CPU time savings and better results with the new 2D-continuum SPH formulation compared to the classical continuum SPH. The explicit dynamic scheme was used for time integration allowing a fast resolution algorithm even for highly nonlinear problems.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 March 2015

Mas Irfan Purbawanto Hidayat, Bambang Ariwahjoedi and Setyamartana Parman

The purpose of this paper is to present a new approach of meshless local B-spline based finite difference (FD) method for solving two dimensional transient heat conduction…

253

Abstract

Purpose

The purpose of this paper is to present a new approach of meshless local B-spline based finite difference (FD) method for solving two dimensional transient heat conduction problems.

Design/methodology/approach

In the present method, any governing equations are discretized by B-spline approximation which is implemented in the spirit of FD technique using a local B-spline collocation scheme. The key aspect of the method is that any derivative is stated as neighbouring nodal values based on B-spline interpolants. The set of neighbouring nodes are allowed to be randomly distributed thus enhanced flexibility in the numerical simulation can be obtained. The method requires no mesh connectivity at all for either field variable approximation or integration. Time integration is performed by using the Crank-Nicolson implicit time stepping technique.

Findings

Several heat conduction problems in complex domains which represent for extended surfaces in industrial applications are examined to demonstrate the effectiveness of the present approach. Comparison of the obtained results with solutions from other numerical method available in literature is given. Excellent agreement with reference numerical method has been found.

Research limitations/implications

The method is presented for 2D problems. Nevertheless, it would be also applicable for 3D problems.

Practical implications

A transient two dimensional heat conduction in complex domains which represent for extended surfaces in industrial applications is presented.

Originality/value

The presented new meshless local method is simple and accurate, while it is also suitable for analysis in domains of arbitrary geometries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 174