To read this content please select one of the options below:

New ALE applications in non‐linear fast‐transient solid dynamics

A. Huerta (Departmento de Matemática Aplicada III, E.T.S. de Ingenieros de Caminos, Universitat Politènica de Catalunya, E–8034 Barcelona, Spain)
F. Casadei (Applied Mechanics Division, Safety Technology Institute, Joint Research Centre, Commission of the European Communities, I–21020 Ispra, Varese, Italy)

Engineering Computations

ISSN: 0264-4401

Article publication date: 1 April 1994

247

Abstract

The arbitrary Lagrangian—Eulerian (ALE) formulation, which is already well established in the hydrodynamics and fluid‐structure interaction fields, is extended to materials with memory, namely, non‐ linear path‐dependent materials. Previous attempts to treat non‐ linear solid mechanics with the ALE description have, in common, the implicit interpolation technique employed. Obviously, this implies a numerical burden which may be uneconomical and may induce to give up this formulation, particularly in fast‐transient dynamics where explicit algorithms are usually employed. Here, several applications are presented to show that if adequate stress updating techniques are implemented, the ALE formulation could be much more competitive than classical Lagrangian computations when large deformations are present. Moreover, if the ALE technique is interpreted as a simple interpolation enrichment, adequate—in opposition to distorted or locally coarse—meshes are employed. Notice also that impossible computations (or at least very involved numerically) with a Lagrangian code are easily implementable in an ALE analysis. Finally, it is important to observe that the numerical examples shown range from a purely academic test to real engineering simulations. They show the effective applicability of this formulation to non‐linear solid mechanics and, in particular, to impact, coining or forming analysis.

Keywords

Citation

Huerta, A. and Casadei, F. (1994), "New ALE applications in non‐linear fast‐transient solid dynamics", Engineering Computations, Vol. 11 No. 4, pp. 317-345. https://doi.org/10.1108/02644409410799317

Publisher

:

MCB UP Ltd

Copyright © 1994, MCB UP Limited

Related articles