Search results

1 – 10 of 285
Article
Publication date: 8 January 2020

Xiaomin Zhou and Zheng Sun

The purpose of this paper is to provide an effective way to assess landslide risk quantitatively. Quantitative assessment plays an important role in mitigating the landslide risk…

Abstract

Purpose

The purpose of this paper is to provide an effective way to assess landslide risk quantitatively. Quantitative assessment plays an important role in mitigating the landslide risk and developing a landslide risk-based warning system. However, efficient risk assessment on the large deformation failure process of slope with spatially variable soils is a challenging problem.

Design/methodology/approach

Combining the Monte Carlo simulation (MCS) and the higher-order material point method – the B-spline Material Point Method (BSMPM) – the concept of MC-BSMPM to assess the landslide risk quantitatively is proposed in this paper. The overall dynamic evolution of soil slope failure has been simulated by the BSMPM, and the probability density function of the sliding duration, the sliding kinematic energy, the sliding mass and the sliding distance of the landslide are obtained based on the MCS. Through the four risk assessment parameters of the sliding duration, the sliding kinematic energy, the sliding mass and the sliding distance, the landslide risk could be assessed quantitatively.

Findings

It is found that the post-failure behavior of the landslide conforms well to a normal distribution as the soil physical parameter is in a normal distribution. The variation of soil’s shear strength affects the dynamic motion of the landslide greatly.

Originality/value

The result shows that the landslide hazard cannot be estimated comprehensively by the deterministic BSMPM, while the landslide risk could be more clearly understood and quantitatively assessed with more details by the proposed method, which demonstrates that the MC-BSMPM method is an effective way to assess the landslide risk quantitatively.

Details

Engineering Computations, vol. 37 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 March 2015

Mas Irfan Purbawanto Hidayat, Bambang Ariwahjoedi and Setyamartana Parman

The purpose of this paper is to present a new approach of meshless local B-spline based finite difference (FD) method for solving two dimensional transient heat conduction…

253

Abstract

Purpose

The purpose of this paper is to present a new approach of meshless local B-spline based finite difference (FD) method for solving two dimensional transient heat conduction problems.

Design/methodology/approach

In the present method, any governing equations are discretized by B-spline approximation which is implemented in the spirit of FD technique using a local B-spline collocation scheme. The key aspect of the method is that any derivative is stated as neighbouring nodal values based on B-spline interpolants. The set of neighbouring nodes are allowed to be randomly distributed thus enhanced flexibility in the numerical simulation can be obtained. The method requires no mesh connectivity at all for either field variable approximation or integration. Time integration is performed by using the Crank-Nicolson implicit time stepping technique.

Findings

Several heat conduction problems in complex domains which represent for extended surfaces in industrial applications are examined to demonstrate the effectiveness of the present approach. Comparison of the obtained results with solutions from other numerical method available in literature is given. Excellent agreement with reference numerical method has been found.

Research limitations/implications

The method is presented for 2D problems. Nevertheless, it would be also applicable for 3D problems.

Practical implications

A transient two dimensional heat conduction in complex domains which represent for extended surfaces in industrial applications is presented.

Originality/value

The presented new meshless local method is simple and accurate, while it is also suitable for analysis in domains of arbitrary geometries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2017

Jian Gao, Hao Wen, Zhiyuan Lin, Haidong Wu, Si Li, Xin Chen, Yun Chen and Yunbo He

Remanufacturing of worn blades with various defects normally requires processes such as scanning, regenerating a geometrical reference model, additive manufacturing (AM) through…

407

Abstract

Purpose

Remanufacturing of worn blades with various defects normally requires processes such as scanning, regenerating a geometrical reference model, additive manufacturing (AM) through laser cladding, adaptive machining and polishing and quality inspection. Unlike the manufacturing process of a new part, the most difficult problem for remanufacturing such a complex surface part is that the reference model adaptive to the worn part is no longer available or useful. The worn parts may suffer from geometrical deformation, distortion and other defects because of the effects of harsh operating conditions, thereby making their original computer aided design (CAD) models inadequate for the repair process. This paper aims to regenerate the geometric models for the worn parts, which is a key issue for implementing AM to build up the parts and adaptive machining to reform the parts. Unlike straight blades with similar cross sections, the tip geometry of the worn tip of a twist blade needs to be regenerated by a different method.

Design/methodology/approach

This paper proposes a surface extension algorithm for the reconstruction of a twist blade tip through the extremum parameterization of a B-spline basis function. Based on the cross sections of the scanned worn blade model, the given control points and knot vectors are firstly reconstructed into a B-spline curve D. After the extremum of each control point is calculated by extremum parameterization of a B-spline basis function, the unknown control points are calculated by substituting the extremum into the curve D. Once all control points are determined, the B-spline surface of the worn blade tip can be regenerated. Finally, the extension algorithm is implemented and validated with several examples.

Findings

The proposed algorithm was implemented and verified through the exampled blades. Through the extension algorithm, the tip geometry of the worn tip of a twist blade can be regenerated. This method solved a key problem for the repair of a twist blade tip. It provides an appropriate reference model for repairing worn blade tips through AM to build up the blade tip and adaptive machining/polishing processes to reform the blade geometry.

Research limitations/implications

The extension errors for different repair models are compared and analyzed. The authors found that there are several factors affecting the accuracy of the regenerated model. When the cross-section interval and the extension length are set properly, the restoration accuracy for the blade tip can be improved, which is acceptable for the repairing.

Practical implications

The lack of a reference geometric model for worn blades is a significant problem when implementing blade repair through AM and adaptive machining processes. Because the geometric reference model is unavailable for the repair process, reconstruction of the geometry of a worn blade tip is the first crucial step. The authors proposed a surface extension algorithm for the reconstruction of a twist blade tip. Through the implementation of the proposed algorithm, the blade tip model can be regenerated.

Social implications

Remanufacturing of worn blades with various defects is highly demeaned for the aerospace enterprises considering sustainable development. Unlike straight blades, repair of twist blades encountered a very difficult problem because the geometric reference model is unavailable for the repair processes. This paper proposed a different method to generate the reference model for the repair of a twist blade tip. With this model, repair of twist blades can be implemented through AM to build up the blade tip and adaptive machining to subtract the extra material.

Originality/value

The authors proposed a surface extension algorithm to reconstruct the geometric model for repair of twist blades.

Article
Publication date: 29 April 2014

Jarraya Abdessalem, Dammak Fakhreddine, Abid Said and Haddar Mohamed

– This paper aims to describe a shape optimization for hyperelastic axisymmetric structure with an exact sensitivity method.

Abstract

Purpose

This paper aims to describe a shape optimization for hyperelastic axisymmetric structure with an exact sensitivity method.

Design/methodology/approach

The whole shape optimization process is carried out by integrating a closed geometric shape in the real space R2 with boundaries defined by B-splines curves. An exact sensitivity analysis and a mathematical programming method (SQP: Sequential Quadratic Programming) are implemented. The design variables are the control points' coordinates which minimize the Von-Mises criteria, with a constraint that the total material volume of the structure remains constant. The feasibility of the proposed methods is carried out by two numerical examples. Results show that the exact Jacobian has an important computing time reduction.

Findings

Numerical examples are presented to illustrate its performance.

Originality/value

In this work, the sensitivity performance is computed using two numerical methods: the efficient finite difference scheme and the exact Jacobian.

Details

Journal of Engineering, Design and Technology, vol. 12 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 November 2021

Guanhua Li, Wei Dong Zhu, Huiyue Dong and Yinglin Ke

This paper aims to present error compensation based on surface reconstruction to improve the positioning accuracy of industrial robots.

Abstract

Purpose

This paper aims to present error compensation based on surface reconstruction to improve the positioning accuracy of industrial robots.

Design/methodology/approach

In previous research, it has been proved that the positioning error of industrial robots is continuous on the two-dimensional manifold of six-joint space. The point cloud generated by positioning error data can be used to fit the continuous surfaces, which makes it possible to apply surface reconstruction on error compensation. The moving least-squares interpolation and the B-spline method are used for the error surface reconstruction.

Findings

The results of experiments and simulations validate the effectiveness of error compensation by the moving least-squares interpolation and the B-spline method.

Practical implications

The proposed methods can control the average of compensated positioning error within 0.2 mm, which meets the requirement of a tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly.

Originality/value

The error surface reconstruction based on the B-spline method has great superiority because fewer sample points are needed to use this method than others while keeping the compensation accuracy at the same level. The control points of the B-spline error surface can be adjusted with measured data, which can be applied for the error prediction in any temperature field.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 January 2021

Angel Rawat, Raghu Piska, A. Rajagopal and Mokarram Hossain

This paper aims to present a nonlocal gradient plasticity damage model to demonstrate the crack pattern of a body, in an elastic and plastic state, in terms of damage law. The…

Abstract

Purpose

This paper aims to present a nonlocal gradient plasticity damage model to demonstrate the crack pattern of a body, in an elastic and plastic state, in terms of damage law. The main objective of this paper is to reconsider the nonlocal theory by including the material in-homogeneity caused by damage and plasticity. The nonlocal nature of the strain field provides a regularization to overcome the analytical and computational problems induced by softening constitutive laws. Such an approach requires C1 continuous approximation. This is achieved by using an isogeometric approximation (IGA). Numerical examples in one and two dimensions are presented.

Design/methodology/approach

In this work, the authors propose a nonlocal elastic plastic damage model. The nonlocal nature of the strain field provides a regularization to overcome the analytical and computational problems induced by softening constitutive laws. An additive decomposition of strains in to elastic and inelastic or plastic part is considered. To obtain stable damage, a higher gradient order is considered for an integral equation, which is obtained by the Taylor series expansion of the local inelastic strain around the point under consideration. The higher-order continuity of nonuniform rational B-splines (NURBS) functions used in isogeometric analysis are adopted here to implement in a numerical scheme. To demonstrate the validity of the proposed model, numerical examples in one and two dimensions are presented.

Findings

The proposed nonlocal elastic plastic damage model is able to predict the damage in an accurate manner. The numerical results are mesh independent. The nonlocal terms add a regularization to the model especially for strain softening type of materials. The consideration of nonlocality in inelastic strains is more meaningful to the physics of damage. The use of IGA framework and NURBS basis functions add to the nonlocal nature in approximations of the field variables.

Research limitations/implications

The method can be extended to 3D. The model does not consider the effect of temperature and the dissipation of energy due to temperature. The method needs to be implemented for more real practical problems and compare with experimental work. This is an ongoing work.

Practical implications

The nonlocal models are suitable for predicting damage in quasi brittle materials. The use of elastic plastic theories allows to capture the inelastic deformations more accurately.

Social implications

The nonlocal models are suitable for predicting damage in quasi brittle materials. The use of elastic plastic theories allows to capture the inelastic deformations more accurately.

Originality/value

The present work includes the formulation and implementation of a nonlocal damage plasticity model using an isogeometric discretization, which is the novel contribution of this paper. An implicit gradient enhancement is considered to the inelastic strain. During inelastic deformations, the proposed strain tensor partitioning allows the use of a distinct potential surface and distinct failure criterion for both damage and plasticity models. The use of NURBS basis functions adds to more nonlocality in the approximation.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 February 2021

Ghassem Faezian, Ahmad Darabi and Nader Sargolzaei

This study aims to design the rotor geometry of switched reluctance motor (SRM) in a completely flexible way. In the proposed method, there is no default geometry for the rotor…

Abstract

Purpose

This study aims to design the rotor geometry of switched reluctance motor (SRM) in a completely flexible way. In the proposed method, there is no default geometry for the rotor. The initial geometry of the rotor can start from a circle or any other shape and depending on the required performance takes the final shape during the optimal design. In this way, the best performance, possible with geometric design, can be achieved.

Design/methodology/approach

The rotor boundary of a 4/2 SRM is defined by a few B-splines. Some control points are located around the rotor and changing their locations causes customized changes in the rotor boundary. Locations of these points are defined as design variables. A 2-D finite element analysis using MATLAB/PDE is applied to the SRM model and sensitivity analysis is used to optimization design by means of minimizing of objective function.

Findings

The proposed method has many more capabilities for matching different objective functions. For the suggested objective function, while the conventional rotor torque profile difference with the desired torque profile reaches 40%, this difference for B-spline rotor is about 17%. Experimental results from a prototype motor have a close agreement with analysis results.

Originality/value

The B-splines have been used to design machines and electromagnetic devices. However, this method is used for the first time in design of the whole rotor of a SRM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 August 2007

Debapriya Chakraborty and Asimava Roy Choudhury

This paper aims to develop an efficient surface‐plane intersection (SPI) algorithm for direct slicing of free‐form surfaces to be produced by layered manufacturing.

Abstract

Purpose

This paper aims to develop an efficient surface‐plane intersection (SPI) algorithm for direct slicing of free‐form surfaces to be produced by layered manufacturing.

Design/methodology/approach

A semi‐analytical method for direct slicing has been formulated and tested on Bezier and B‐spline surfaces commonly used in CAD modeling. This method solves for the intersection points by a “root” finding procedure and establishes their connectivity, unlike the conventional “marching” procedures.

Findings

The proposed algorithm solves intersection contours between free form surfaces and planes. The solution procedure is efficient with respect to computational time and accuracy (feature detection) over some of the conventional SPI strategies. The method involves a global solution procedure in contention with the traditional methodologies which are generally spatially distinctive in approach.

Research limitations/implications

Use of higher order terms in the representation of parametric surfaces makes the algorithm computationally intensive and time‐expensive.

Practical implications

This algorithm would be of practical use in the direct slicing of free form surfaces used in CAD modeling. Direct slicing methods solve for the actual intersection of surface and plane without resorting to “tessellation.” Reducing the computation time and detection of features within a given resolution is of primary importance for developing commercial rapid prototyping software, which is achieved in the present paper.

Originality/value

A novel method has been developed for SPI for use in direct slicing of CAD models. While a major proportion of the direct slicing strategies employ the “marching” procedure involving determination of “critical points,” the proposed method utilizes the evaluation of “roots” of a surface in a global manner to determine the intersection points with proper connectivity. Hence, it is effective in reducing the computation time and is simple but generic in approach. Although Bezier and B‐spline surfaces are used as the representative cases, the algorithm can be extended for any parametric surface for direct slicing.

Details

Rapid Prototyping Journal, vol. 13 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 October 2012

Alper Korkmaz and İdris Dağ

Cubic B‐spline differential quadrature methods have been introduced. As test problems, two different solutions of advection‐diffusion equation are chosen. The first test problem…

Abstract

Purpose

Cubic B‐spline differential quadrature methods have been introduced. As test problems, two different solutions of advection‐diffusion equation are chosen. The first test problem, the transportion of an initial concentration, and the second one, the distribution of an initial pulse, are simulated. The purpose of this paper is to simulate the test problems.

Design/methodology/approach

The cubic B‐spline functions are chosen as test functions in order to construct the differential quadrature method. The error between the numerical solutions and analytical solutions are measured using various error norms.

Findings

The cubic B‐spline differential quadrature methods have produced acceptable solution for advection‐diffusion equation.

Originality/value

The advection‐diffusion equation has never been solved by any differential quadrature method based on cubic B‐splines.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2021

Ouadie Koubaiti, Said EL Fakkoussi, Jaouad El-Mekkaoui, Hassan Moustachir, Ahmed Elkhalfi and Catalin I. Pruncu

This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and…

Abstract

Purpose

This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and non-homogeneous; Dirichlet boundary conditions. This paper considered the two-dimensional linear elasticity equation of Navier–Lamé with the condition CAB. The latter allows to have a total insertion of the essential boundary condition in the linear system obtained; without using a numerical method as Lagrange multiplier. This study have developed mixed finite element; method using the B-splines Web-spline space. These provide an exact implementation of the homogeneous; Dirichlet boundary conditions, which removes the constraints caused by the standard; conditions. This paper showed the existence and the uniqueness of the weak solution, as well as the convergence of the numerical solution for the quadratic case are proved. The weighted extended B-spline; approach have become a much more workmanlike solution.

Design/methodology/approach

In this paper, this study used the implementation of weighted finite element methods to solve the Navier–Lamé system with a new boundary condition CA, B (Koubaiti et al., 2020), that generalises the well-known basis, especially the Dirichlet and the Neumann conditions. The novel proposed boundary condition permits to use a single Matlab code, which summarises all kind of boundary conditions encountered in the system. By using this model is possible to save time and programming recourses while reap several programs in a single directory.

Findings

The results have shown that the Web-spline-based quadratic-linear finite elements satisfy the inf–sup condition, which is necessary for existence and uniqueness of the solution. It was demonstrated by the existence of the discrete solution. A full convergence was established using the numerical solution for the quadratic case. Due to limited regularity of the Navier–Lamé problem, it will not change by increasing the degree of the Web-spline. The computed relative errors and their rates indicate that they are of order 1/H. Thus, it was provided their theoretical validity for the numerical solution stability. The advantage of this problem that uses the CA, B boundary condition is associated to reduce Matlab programming complexity.

Originality/value

The mixed finite element method is a robust technique to solve difficult challenges from engineering and physical sciences using the partial differential equations. Some of the important applications include structural mechanics, fluid flow, thermodynamics and electromagnetic fields (Zienkiewicz and Taylor, 2000) that are mainly based on the approximation of Lagrange. However, this type of approximation has experienced a great restriction in the level of domain modelling, especially in the case of complicated boundaries such as that in the form of curvilinear graphs. Recently, the research community tried to develop a new way of approximation based on the so-called B-spline that seems to have superior results in solving the engineering problems.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 285