Search results

1 – 10 of over 3000
Article
Publication date: 20 October 2020

Wenping Yue and Mingyang Yang

The results showed that the use of a magnetic marker could relatively accurately reflect the fracture pattern inside the rock-like material (RLM).

Abstract

Purpose

The results showed that the use of a magnetic marker could relatively accurately reflect the fracture pattern inside the rock-like material (RLM).

Design/methodology/approach

This study investigated the internal structure and fracture pattern of a fractured RLM. Magnetized iron oxide powder, which was used as a magnetic marker, was mixed with water and glue to form a magnetic slurry, which was subsequently injected into a fractured RLM. After the magnetic slurry completely filled the cracks inside the RLM and became cemented, the distribution and magnitude of the magnetic field inside the RLM were determined using a three-dimensional (3D) magnetic field imaging system.

Findings

A model for determining the magnetic field strength was developed using MATLAB.

Originality/value

This model of 3D magnetic will further be used as a finite element tool to simulate and image cracks inside the rock.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2001

Hartmut Popella and Gerhard Henneberger

The resolution of magnetic resonance imaging, commonly known as MRI, depends on the homogeneity and field strength of the used primary magnetic field \vecB0 over the volume of…

Abstract

The resolution of magnetic resonance imaging, commonly known as MRI, depends on the homogeneity and field strength of the used primary magnetic field \vecB0 over the volume of interest. In clinical tomographs homogeneous fields are produced by solenoid coil windings or long round permanent magnets. These solutions are unsuitable for mobile usage because of weight and costs. This paper introduces an optimized magnetic circuit for a mobile universal surface explorer (MOUSE) which meets the requirements of sufficient homogeneity and low weight.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 March 2022

Simon Chauviere, Lamia Belguerras, Thierry Lubin and Smail Mezani

The purpose of this paper is the design study and realisation of portable low-field open MRI system.

Abstract

Purpose

The purpose of this paper is the design study and realisation of portable low-field open MRI system.

Design/methodology/approach

The design of the magnetic resonance imaging (MRI) system is based on an optimization study using a genetic algorithm. Non-linear two-dimensional and three-dimensional numerical electromagnetic models are developed and inserted in the optimization environment.

Findings

The results are found to be consistent with those issued from fully experimental tests. The static field produced by the device is 0.295 T with a homogeneity of 2.8% (28,000 ppm) over 100 mm diameter sphere volume. The z-axis gradient coils are capable of generating switching gradients with an amplitude of 8 mT/m and a frequency of 1.2 kHz.

Originality/value

Our system is an open portable MRI which can be used in an ambulance. The open topology permits an easy access into the lateral sides when a surgery using surgical instrument with video feedback is needed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 July 2016

Helmut Wernick, Patrick Hoelzl and Bernhard G. Zagar

The purpose of this paper is to present a fast and contactless measurement method to determine the spatial conductivity distribution within an intrinsically conducting polymer…

Abstract

Purpose

The purpose of this paper is to present a fast and contactless measurement method to determine the spatial conductivity distribution within an intrinsically conducting polymer, more precisely a conductive rubber sheet specimen. As a consequence of the manufacturing process and the material composition, the conductivity distribution within the sheet is assumed to be inhomogeneous.

Design/methodology/approach

The current density distribution within the conductive rubber sheet due to an excitation current is estimated from the measured magnetic field distribution. Therefore, a GMR sensor is used to spatially sample the magnetic field above the specimen. Based on the estimated current density distribution and alternatively the local power dissipation calculated from a thermal image, the conductivity distribution within the specimen is determined. For comparison a reference measurement with a classical resistivity probe is done.

Findings

The measurement results show a good agreement between the developed and the classical method. Moreover, the developed measurement method requires less time and still offers a higher spatial resolution.

Originality/value

The presented results demonstrate the potential of the developed measurement method for determining the conductivity distribution within thin and planar specimens. Furthermore, conclusions can be drawn about the material homogeneity of the used test specimen.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 July 2019

Christopher Stroehlein, Hermann Landes, Andreas Krug and Peter Dietz

The purpose of this paper is to investigate magneto-mechanical coupling occurring in magnetic resonance imaging (MRI) systems. The authors study influence of the strength of the…

Abstract

Purpose

The purpose of this paper is to investigate magneto-mechanical coupling occurring in magnetic resonance imaging (MRI) systems. The authors study influence of the strength of the background field on the coupling of mechanically isolated, conductive cylindrical structures and the so-called shields. This coupling has a strong impact on frequency-dependent thermal losses occurring in the shield structures which are of high importance in MRI systems.

Design/methodology/approach

In the investigations, numerical methods are applied. First, finite element methods taking into account the full magneto-mechanical coupling are used to investigate the coupled physical phenomena. As these calculations may be time-consuming, several approximate predictive methods are derived. Modal expansion factors and participation factors are based on combinations of structural eigenmode calculations and eddy current calculations using Biot–Savart representations of the dynamic gradient field. In addition, a parallelism factor expressed in terms of the shield vibrations is defined to measure the coupling between the distinct cylinders.

Findings

It is found that the strength of the background field strongly influences the coupling of the distinct shields, which strongly increases the parallelism of the shield vibrations. Furthermore, modal expansion and participation factors are significantly influenced, caused by frequency shifts due to magnetic stiffening and increased magnetic coupling.

Research limitations/implications

The current work is limited to the modal expansions of a single shield. This needs to be extended in the future as comparison of modal expansion factors and finite element simulation indicate.

Originality/value

The defined factors estimating parallelism and modal participation in magneto-mechanical coupling are original work and studied for the first time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 November 2000

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end…

1347

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end of the paper contains 748 references to papers, conference proceedings and theses/dissertations dealing with the finite element analyses and simulations in biomedicine that were published between 1985 and 1999.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2023

Fatima Barrarat, Karim Rayane, Bachir Helifa, Samir Bensaid and Iben Khaldoun Lefkaier

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their…

Abstract

Purpose

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their ability to detect cracks that are not perpendicular to induced current flows. This study aims to investigate the application of the rotating electromagnetic field method to detect arbitrary orientation defects in conductive nonferrous parts. This method significantly improves the detection of cracks of any orientation.

Design/methodology/approach

A new rotating uniform eddy current (RUEC) probe is presented. Two exciting pairs consisting of similar square-shaped coils are arranged orthogonally at the same lifting point, thus avoiding further adjustment of the excitation system to generate a rotating electromagnetic field, eliminating any need for mechanical rotation and focusing this field with high density. A circular detection coil serving as a receiver is mounted in the middle of the excitation system.

Findings

A simulation model of the rotating electromagnetic field system is performed to determine the rules and characteristics of the electromagnetic signal distribution in the defect area. Referring to the experimental results aimed to detect artificial cracks at arbitrary angles in underwater structures using the rotating alternating current field measurement (RACFM) system in Li et al. (2016), the model proposed in this paper is validated.

Originality/value

CEDRAT FLUX 3D simulation results showed that the proposed probe can detect cracks with any orientation, maintaining the same sensitivity, which demonstrates its effectiveness. Furthermore, the proposed RUEC probe, associated with the exploitation procedure, allows us to provide a full characterization of the crack, namely, its length, depth and orientation in a one-pass scan, by analyzing the magnetic induction signal.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 April 2022

Hamed Attar, Ahmad Moradnouri, Reza Mirghaforian and Arsalan Hekmati

It has constantly been important to investigate the distribution of magnetic fields in high temperature superconducting (HTS) transformers because the high magnetic field applied…

Abstract

Purpose

It has constantly been important to investigate the distribution of magnetic fields in high temperature superconducting (HTS) transformers because the high magnetic field applied to the HTS tapes reduces the critical current and increases the ac losses. The purpose of this study is investigation of the impact of the radius of double pancake windings on the electromagnetic behavior of HTS transformer. In this paper, by changing the radius of the windings in a step-by-step manner in two modes, the electromagnetic behaviors in double pancakes (DPs) of a single-phase HTS transformer have been investigated.

Design/methodology/approach

In this paper a 15.4 kVA single-phase HTS transformer has been designed and simulated using the finite element method, using COMSOL multiphysics software. The effect of changing the radius of the low-voltage (LV) and high-voltage (HV) windings on the electromagnetic parameters such as distribution of circulating currents and magnetic field in the LV DP windings has been investigated.

Findings

According to the results, by increasing the radius of the LV winding, the electromagnetic behavior of the highest and lowest DPs becomes highly undesirable, while in other DPs, it becomes desirable. The same thing happens by increasing the radius of the LV and HV windings, but with much less intensity. Therefore, according to Ce, the most optimal case is when the two windings (HV and LV) are close to each other and to the core, and if the radius needs to be increased, it is better to increase the radius of both windings.

Originality/value

For the first time, the impact of the radius of DP windings on the electromagnetic behavior of HTS transformer has been investigated.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 September 2019

Khalil Khanafer and K. Vafai

This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media.

Abstract

Purpose

This study aims to investigate a critical review on the applications of fluid-structure interaction (FSI) in porous media.

Design/methodology/approach

Transport phenomena in porous media are of continuing interest by many researchers in the literature because of its significant applications in engineering and biomedical sectors. Such applications include thermal management of high heat flux electronic devices, heat exchangers, thermal insulation in buildings, oil recovery, transport in biological tissues and tissue engineering. FSI is becoming an important tool in the design process to fully understand the interaction between fluids and structures.

Findings

This study is structured in three sections: the first part summarizes some important studies on the applications of porous medium and FSI in various engineering and biomedical applications. The second part focuses on the applications of FSI in porous media as related to hyperthermia. The third part of this review is allocated to the applications of FSI of convection flow and heat transfer in engineering systems filled with porous medium.

Research limitations/implications

To the best knowledge of the present authors, FSI analysis of turbulent flow in porous medium never been studied, and therefore, more attention should be given to this area in any future studies. Moreover, more studies should also be conducted on mixed convective flow and heat transfer in systems using porous medium and FSI.

Practical implications

The wall of the blood vessel is considered as a flexible multilayer porous medium, and therefore, rigid wall analysis is not accurate, and therefore, FSI should be implemented for accurate predictions of flow and hemodynamic stresses.

Social implications

The use of porous media theory in biomedical applications received a great attention by many investigators in the literature (Khanafer and Vafai, 2006a; Al-Amiri et al., 2014; Lasiello et al., 2016a, Lasiello et al., 2016b; Lasiello et al., 2015; Chung and Vafai, 2013; Mahjoob and Vafai, 2009; Yang and Vafai, 2008; Yang and Vafai, 2006; Ai and Vafai, 2006). A comprehensive review was conducted by Khanafer and Vafai (2006b) summarizing various studies associated with magnetic field imaging and drug delivery. The authors illustrated that the tortuosity and porosity had a profound effect on the diffusion process within the brain. AlAmiri et al. (2014) conducted a numerical study to investigate the effect of turbulent pulsatile flow and heating technique on the thermal distribution within the arterial wall. The results of that investigation illustrated that local heat flux variation along the bottom layer of the tumor was greater for the low-velocity condition. Yang and Vafai (2006) presented a comprehensive four-layer model to study low-density lipoprotein transport in the arterial wall coupled with a lumen (Figure 1). All the four layers (endothelium, intima, internal elastic lamina and media) were modeled as a homogenous porous medium.

Originality/value

Future studies on the applications of FSI in porous media are recommended in this review.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2022

Abdul Hannan Qureshi, Wesam Salah Alaloul, Wong Kai Wing, Syed Saad, Khalid Mhmoud Alzubi and Muhammad Ali Musarat

Rebar is the prime component of reinforced concrete structures, and rebar monitoring is a time-consuming and technical job. With the emergence of the fourth industrial revolution…

Abstract

Purpose

Rebar is the prime component of reinforced concrete structures, and rebar monitoring is a time-consuming and technical job. With the emergence of the fourth industrial revolution, the construction industry practices have evolved toward digitalization. Still, hesitation remains among stakeholders toward the adoption of advanced technologies and one of the significant reasons is the unavailability of knowledge frameworks and implementation guidelines. This study aims to investigate technical factors impacting automated monitoring of rebar for the understanding, confidence gain and effective implementation by construction industry stakeholders.

Design/methodology/approach

A structured study pipeline has been adopted, which includes a systematic literature collection, semistructured interviews, pilot survey, questionnaire survey and statistical analyses via merging two techniques, i.e. structural equation modeling and relative importance index.

Findings

The achieved model highlights “digital images” and “scanning” as two main categories being adopted for automated rebar monitoring. Moreover, “external influence”, “data-capturing”, “image quality”, and “environment” have been identified as the main factors under “digital images”. On the other hand, “object distance”, “rebar shape”, “occlusion” and “rebar spacing” have been highlighted as the main contributing factors under “scanning”.

Originality/value

The study provides a base guideline for the construction industry stakeholders to gain confidence in automated monitoring of rebar via vision-based technologies and effective implementation of the progress-monitoring processes. This study, via structured data collection, performed qualitative and quantitative analyses to investigate technical factors for effective rebar monitoring via vision-based technologies in the form of a mathematical model.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 3000