Search results

1 – 10 of over 3000
Article
Publication date: 1 August 2023

Fatima Barrarat, Karim Rayane, Bachir Helifa, Samir Bensaid and Iben Khaldoun Lefkaier

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their…

Abstract

Purpose

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their ability to detect cracks that are not perpendicular to induced current flows. This study aims to investigate the application of the rotating electromagnetic field method to detect arbitrary orientation defects in conductive nonferrous parts. This method significantly improves the detection of cracks of any orientation.

Design/methodology/approach

A new rotating uniform eddy current (RUEC) probe is presented. Two exciting pairs consisting of similar square-shaped coils are arranged orthogonally at the same lifting point, thus avoiding further adjustment of the excitation system to generate a rotating electromagnetic field, eliminating any need for mechanical rotation and focusing this field with high density. A circular detection coil serving as a receiver is mounted in the middle of the excitation system.

Findings

A simulation model of the rotating electromagnetic field system is performed to determine the rules and characteristics of the electromagnetic signal distribution in the defect area. Referring to the experimental results aimed to detect artificial cracks at arbitrary angles in underwater structures using the rotating alternating current field measurement (RACFM) system in Li et al. (2016), the model proposed in this paper is validated.

Originality/value

CEDRAT FLUX 3D simulation results showed that the proposed probe can detect cracks with any orientation, maintaining the same sensitivity, which demonstrates its effectiveness. Furthermore, the proposed RUEC probe, associated with the exploitation procedure, allows us to provide a full characterization of the crack, namely, its length, depth and orientation in a one-pass scan, by analyzing the magnetic induction signal.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 November 2023

Zhenwei Li, Zhixun Wen, Cheng Wang, Ying Dai and Peng Fei He

This paper aims to provide SIF calculation method for engineering application.

Abstract

Purpose

This paper aims to provide SIF calculation method for engineering application.

Design/methodology/approach

In this paper, the stress intensity factors (SIFs) calculation method is applied to the anisotropic Ni-based single crystal film cooling holes (FCHs) structure.

Findings

Based on contour integral, the anisotropic SIFs analysis finite element method (FEM) in Ni-based single crystal is proposed. The applicability and mesh independence of the method is assessed by comparing the calculated SIFs using mode of plate with an edge crack. Anisotropic SIFs can be calculated with excellent accuracy using the finite element contour integral approach. Then, the effect of crystal orientation and FCHs interference on the anisotropic SIFs is clarified. The SIFs of FCH edge crack in the [011] orientated Ni-based single crystal increases faster than the other two orientations. And the SIF of horizontal interference FCHs edge crack is also larger than that of the inclined interference one.

Originality/value

The SIFs of the FCH edge crack in the turbine air-cooled blade are innovatively computed using the sub-model method. Both the Mode I and II SIFs of FCHs edge crack in blade increase with crack growing.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 November 2009

Chia‐Hau Chen, Chao‐Shi Chen, Ernian Pan, Han‐Chou Tseng and Pao‐Shan Yu

The purpose of this paper is to present special nine‐node quadrilateral elements to discretize the un‐cracked boundary and the inclined surface crack in a transversely isotropic…

Abstract

Purpose

The purpose of this paper is to present special nine‐node quadrilateral elements to discretize the un‐cracked boundary and the inclined surface crack in a transversely isotropic cuboid under a uniform vertical traction along its top and bottom surfaces by a three‐dimensional (3D) boundary element method (BEM) formulation. The mixed‐mode stress intensity factors (SIFs), KI, KII and KIII, are calculated.

Design/methodology/approach

A 3D dual‐BEM or single‐domain BEM is employed to solve the fracture problems in a linear anisotropic elastic cuboid. The transversely isotropic plane has an arbitrary orientation, and the crack surface is along an inclined plane. The mixed 3D SIFs are evaluated by using the asymptotical relation between the SIFs and the relative crack opening displacements.

Findings

Numerical results show clearly the influence of the material and crack orientations on the mixed‐mode SIFs. For comparison, the mode‐I SIF when a horizontal rectangular crack is embedded entirely within the cuboid is calculated also. It is observed that the SIF values along the crack front are larger when the crack is closer to the surface of the cuboid than those when the crack is far away from the surface.

Research limitations/implications

The FORTRAN program developed is limited to regular surface cracks which can be discretized by the quadrilateral shape function; it is not very efficient and suitable for irregular crack shapes.

Practical implications

The evaluation of the 3D mixed‐mode SIFs in the transversely isotropic material may have direct practical applications. The SIFs have been used in engineering design to obtain the safety factor of the elastic structures.

Originality/value

This is the first time that the special nine‐node quadrilateral shape function has been applied to the boundary containing the crack mouth. The numerical method developed can be applied to the SIF calculation in a finite transversely isotropic cuboid within an inclined surface crack. The computational approach and the results of SIFs are of great value for the modeling and design of anisotropic elastic structures.

Details

Engineering Computations, vol. 26 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2003

Ahmad Al‐Qaisia, Giuseppe Catania and Umberto Meneghetti

The problem of damage and crack detection in structural components has acquired an important role in recent years. Since the presence of cracks in a structure may alter its…

Abstract

The problem of damage and crack detection in structural components has acquired an important role in recent years. Since the presence of cracks in a structure may alter its vibrational characteristics, the estimation of such variations can be used to detect cracks and damage, and to monitor the integrity of structures. The use of fast, easy and inexpensive non‐destructive testing is thus a major task. In this paper, sensitivity analysis by measurement of the reduction of eigenfrequencies was utilized to localize a crack in a non‐rotating shaft coupled to an elastic foundation. The shaft was modeled by the finite element method and coupled to an experimentally identified foundation model. The detection of a crack with different depths and orientations was verified experimentally and a good agreement between actual and detected crack positions was achieved. Finally easiness, effectiveness, applicability of the method and its extensions are also shown.

Details

Journal of Quality in Maintenance Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 9 April 2018

Sunil Bhat and S. Narayanan

Behavior of mode I crack tip in fiber metal laminate (FML) differs from that in homogeneous or plain specimen made of metal used in the laminate due to the load transfer effect in…

60

Abstract

Purpose

Behavior of mode I crack tip in fiber metal laminate (FML) differs from that in homogeneous or plain specimen made of metal used in the laminate due to the load transfer effect in the laminate caused by property mismatch between dissimilar material layers. The purpose of this paper is to present a finite element investigation on the characteristics of crack tip in monotonically loaded and residually stressed FML.

Design/methodology/approach

Crack tip characteristics are assessed by: the sizes of various zones that form at the tip; and crack tip energy release rates. The same are found by modeling two types of Glare laminates under monotonic tension with different crack orientations in SSY regime – Type I and Type II. Residual stresses are externally introduced in the models. Delaminations are modeled by cohesive elements. Crack tip zone sizes are measured from finite element solutions. Values of J integrals are computed over cyclic paths near the crack tips. Identically cracked and loaded plain aluminum alloy specimens are also modeled for comparison.

Findings

The sizes of crack tip zones in Glare laminates are found to be different than those in plain specimens. Process zone is observed to form at crack tip in Type I laminate whereas it does not develop in Type II laminate, the reverse being true in plain specimens. Values of J integrals near crack tips are also found to deviate from those in plain specimens, higher in Type I laminate due to crack tip stress amplification and lower in Type II laminate due to stress reduction. Crack orientation decides the amplification or shielding effect in the laminate.

Research limitations/implications

There is scope for validating the numerical results reported in the paper by theoretical models.

Practical implications

The method to quantify crack tip shielding and amplification is presented that shall be useful in checking the structural integrity/safety of the laminate during actual service conditions.

Originality/value

Shielding and amplification effects are explicitly described and illustrated in the paper. Suitability of using J integrals over paths crossing non-homogeneous and property mismatched material layers is tested. Use of cohesive zone method that is readily applicable in finite element procedures and is relatively simple, fast and reasonably accurate is also demonstrated.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 June 2017

Hussain Altammar, Sudhir Kaul and Anoop K. Dhingra

Wavelets are being increasingly used for damage diagnostics. The purpose of this paper is to present an algorithm that uses the wavelet transform for detecting mixed-mode, also…

Abstract

Purpose

Wavelets are being increasingly used for damage diagnostics. The purpose of this paper is to present an algorithm that uses the wavelet transform for detecting mixed-mode, also known as combined mode, cracks in large truss structures.

Design/methodology/approach

The mixed-mode crack is modeled by superposing two damage modes, and this model is combined with a finite element model of the truss. The natural modes of the truss are processed through the wavelet transform and then used to determine the damage location. The influence of multiple parameters such as truss geometry, crack geometry, number of truss members, orientation of truss members, etc. is investigated as part of the study.

Findings

The proposed damage detection algorithm is found to be successful in detecting single mode as well as mixed-mode cracks even in the presence of significant end effects, and even when a relatively coarse sampling of natural modes is used. Results from multiple simulations that involve three commonly used truss structures are presented. A correlation between damage severity and the magnitude of wavelet coefficients is observed.

Originality/value

The proposed algorithm is found to be successful in accurately detecting damage, but direct determination of damage severity is found to be challenging.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 February 2019

Hamid Hamli Benzahar

The purpose of this paper is to evaluate theoretically and numerically the stress and stress intensity factor (SIF) at the time of propagation of the crack in bi-material. The…

Abstract

Purpose

The purpose of this paper is to evaluate theoretically and numerically the stress and stress intensity factor (SIF) at the time of propagation of the crack in bi-material. The problem is formulated using two thin materials which are bound by a cracked adhesive at the tip and having a micro-crack in one of these two materials.

Design/methodology/approach

The plane stresses and the SIF will be determined as a function of two parameters (Poisson’s ratio and Shear modulus). The numerical analysis is carried out on a flat element, having a main crack in one of these ends, and a micro-crack varies in the vicinity of this main crack. The problem is analyzed by the finite element method and processed by computational software (ABAQUS).

Findings

The numerical and theoretical analysis allowed the author to determine and compare the values of plane stresses and SIF in each area of the material.

Originality/value

The theoretical analysis of SIF is based mainly on a mathematical calculation of equations of plane stresses; these equations are determined by development of complex analytical functions of bi-materials given by other researchers. Using the numerical method, several models are modeled by changing the micro-crack position relative to the main crack to determine the plane stresses and SIF for each position.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 7 October 2014

Prasad Ramchandra Baviskar and Vinod B. Tungikar

The purpose of this paper is to address the determination of crack location and depth of multiple transverse cracks by monitoring natural frequency and its prediction using…

Abstract

Purpose

The purpose of this paper is to address the determination of crack location and depth of multiple transverse cracks by monitoring natural frequency and its prediction using Artificial Neural Networks (ANN). An alternative to the existing NDTs is suggested.

Design/methodology/approach

Modal analysis is performed to extract the natural frequency. Analysis is performed for two cases of cracks. In first case, both cracks are perpendicular to axis. In second case, both cracks are inclined to vertical plane and also inclined with each other. Finite element method (FEM) is performed using ANSYSTM software which is theoretical basis. Experimentation is performed using Fast Fourier Transform (FFT) analyzer on simply supported stepped rotor shaft and cantilever circular beam with two cracks each.

Findings

The results of FEM and experimentation are validated and are in good agreement. The error in crack detection by FEM is in the range of 3-15 percent while 5-20 percent by experimentation. The database obtained by modal analysis is used to train the network of ANN which predicts crack characteristics. Validity of method is investigated by comparing the predictions of ANN with FEM and experimentation. The results are in good agreement with error of 7-16 percent between ANN and FEM while 9-21 percent between ANN and experimental analysis.

Originality/value

It envisages that the method is capable. It is an effective as well as an alternate method of fault detection in beam/rotating element to the existing methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 10 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2019

Bhumi Ankit Shah and Dipak P. Vakharia

Many incidents of rotor failures are reported due to the development and propagation of the crack. Condition monitoring is adopted for the identification of symptoms of the crack

206

Abstract

Purpose

Many incidents of rotor failures are reported due to the development and propagation of the crack. Condition monitoring is adopted for the identification of symptoms of the crack at very early stage in the rotating machinery. Identification requires a reliable and accurate vibration analysis technique for achieving the objective of the study. The purpose of this paper is to detect the crack in the rotating machinery by measuring vibration parameters at different measurement locations.

Design/methodology/approach

Two different types of cracks were simulated in these experiments. Experiments were conducted using healthy shaft, crack simulated shaft and glued shaft with and without added unbalance to observe the changes in vibration pattern, magnitude and phase. Deviation in vibration response allows the identification of crack and its location. Initial data were acquired in the form of time waveform. Run-up and coast-down measurements were taken to find the critical speed. The wavelet packet energy analysis technique was used to get better localization in time and frequency zone.

Findings

The presence of crack changes the dynamic behavior of the rotor. 1× and 2× harmonic components for steady-state test and critical speed for transient test are important parameters in condition monitoring to detect the crack. To separate the 1× and 2× harmonic component in the different wavelet packets, original signal is decomposed in nine levels. Wavelet packet energy analysis is carried out to find the intensity of the signal due to simulated crack.

Originality/value

Original signals obtained from the experiment test set up may contain noise component and dominant frequency components other than the crack. Wavelet packets contain the crack-related information that are identified and separated in this study. This technique develops the condition monitoring procedure more specific about the type of the fault and accurate due to the separation of specific fault features in different wavelet packets. From the experiment end results, it is found that there is significant rise in a 2× energy component due to crack in the shaft. The intensity of a 1× energy component depends upon the shaft crack and unbalance orientation angle.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 September 1998

J.T. Chen, K.H. Chen, W. Yeih and N.C. Shieh

A dual integral formulation for a cracked bar under torsion is derived, and a dual boundary element method is implemented. It is shown that as the thickness of the crack becomes…

Abstract

A dual integral formulation for a cracked bar under torsion is derived, and a dual boundary element method is implemented. It is shown that as the thickness of the crack becomes thinner, the ill‐posedness for the linear algebraic matrix becomes more serious if the conventional BEM is used. Numerical experiments for solution instability due to ill‐posedness are shown. To deal with this difficulty, the hypersingular equation of the dual boundary integral formulation is employed to obtain an independent constraint equation for the boundary unknowns. For the sake of computational efficiency, the area integral for the torsion rigidity is transformed into two boundary integrals by using Green’s second identity and divergence theorem. Finally, the torsion rigidities for cracks with different lengths and orientations are solved by using the dual BEM, and the results compare well with the analytical solutions and FEM results.

Details

Engineering Computations, vol. 15 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000