Search results

1 – 10 of over 8000
Article
Publication date: 1 March 2006

Shutian Liu and Yongcun Zhang

In this paper, a homogenization‐based multi‐scale method for predicting the effective thermal conductivity of porous materials with radiation is presented, which considers the…

Abstract

In this paper, a homogenization‐based multi‐scale method for predicting the effective thermal conductivity of porous materials with radiation is presented, which considers the effect of geometry and distribution of pores. Using homogenization method to solve the pure conductive problem of porous materials with periodic structure, the effective thermal conductivity without considering radiation is predicted, and a temperature field in a local domain of a unit cell is obtained. This temperature field is taken as the good approximation of the real temperature distribution, and the radiative thermal conductivity is obtained. The effect of the microstructure, the distribution and geometry of pores on heat transfer of porous materials is discussed. It is concluded that the dimension of the pores is an important influence factor on the thermal transfer property of porous materials if radiation is considered. Increasing the pore’s dimension enhances the contribution of radiation to the heat transfer property of porous materials. For porous materials with cylindrical and spherical pores, the radiative thermal conductivity is proportional to pore’s diameter.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 September 2013

Mengqi Yuan, Timothy T Diller, David Bourell and Joseph Beaman

The purpose of this paper is to acquire thermal conductivities of both fresh and preheated polyamide 12 powder under various conditions to provide a basis for effective and…

Abstract

Purpose

The purpose of this paper is to acquire thermal conductivities of both fresh and preheated polyamide 12 powder under various conditions to provide a basis for effective and accurate control during the laser sintering (LS) process.

Design/methodology/approach

A Hot Disk® TPS 500 thermal measurement system using a transient plane source (TPS) technology was employed for thermal conductivity measurements. Polyamide 12 powder was packed at different densities, and different carrier gases were used. Tests were also performed on fully dense laser sintered polyamide 12 to establish a baseline.

Findings

Polyamide 12 powder thermal conductivity varies with packing density and temperature, which is approximately one-third bulk form thermal conductivity. Inter-particle bonding is the primary factor influencing polyamide 12 thermal conductivity.

Research limitations/implications

Limited ranges of density were tested, and the carrier gas needed carefully control to prevent powder oxidation. Thermal properties obtained were not tested in the LS process.

Originality/value

This experimental result could be used to enhance thermal control during the LS process.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 March 2024

Hendrik Hensel and Markus Clemens

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air…

Abstract

Purpose

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air. However, under high voltage direct current conditions, charge accumulation and electric field stress may occur, which may lead to partial discharge or system failure. Therefore, numerical simulations are used to design the system and determine the electric field and charge distribution. Although the gas conduction shows a more complex current–voltage characteristic compared to solid insulation, the electric conductivity of the SF6 gas is set as constant in most works. The purpose of this study is to investigate different approaches to address the conduction in the gas properly for numerical simulations.

Design/methodology/approach

In this work, two approaches are investigated to address the conduction in the insulating gas and are compared to each other. One method is an ion-drift-diffusion model, where the conduction in the gas is described by the ion motion in the SF6 gas. However, this method is computationally expensive. Alternatively, a less complex approach is an electro-thermal model with the application of an electric conductivity model for the SF6 gas. Measurements show that the electric conductivity in the SF6 gas has a nonlinear dependency on temperature, electric field and gas pressure. From these measurements, an electric conductivity model was developed. Both methods are compared by simulation results, where different parameters and conditions are considered, to investigate the potential of the electric conductivity model as a computationally less expensive alternative.

Findings

The simulation results of both simulation approaches show similar results, proving the electric conductivity for the SF6 gas as a valid alternative. Using the electro-thermal model approach with the application of the electric conductivity model enables a solution time up to six times faster compared to the ion-drift-diffusion model. The application of the model allows to examine the influence of different parameters such as temperature and gas pressure on the electric field distribution in the GIL, whereas the ion-drift-diffusion model enables to investigate the distribution of homo- and heteropolar charges in the insulation gas.

Originality/value

This work presents numerical simulation models for high voltage direct current GIL, where the conduction in the SF6 gas is described more precisely compared to a definition of a constant electric conductivity value for the insulation gas. The electric conductivity model for the SF6 gas allows for consideration of the current–voltage characteristics of the gas, is computationally less expensive compared to an ion-drift diffusion model and needs considerably less solution time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 September 2023

Yunchu Yang, Hengyu Wang, Hangyu Yan, Yunfeng Ni and Jinyu Li

The heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer…

Abstract

Purpose

The heat transfer properties play significant roles in the thermal comfort of the clothing products. The purpose of this paper is to find the relationship between heat transfer properties and fabrics' structure, yarn properties and predict the effective thermal conductivity of single layer woven fabrics by a parametric mathematical model.

Design/methodology/approach

First, the weave unit was divided into four types of element regions, including yarn overlap regions, yarn crossing regions, yarn floating regions and pore regions. Second, the number and area proportion of each region were calculated respectively. Some formulas were created to calculate the effective thermal conductivity of each element region based on serial model, parallel model or series–parallel mixing model. Finally, according to the number and area proportion of each region in weave unit, the formulas were established to calculate the fabric overall effective thermal conductivity in thickness direction based on the parallel models.

Findings

The influences of yarn spacing, yarn width, fabric thickness, the compressing coefficients of air layers and weave type on the effective thermal conductivity were further discussed respectively. In this model, the relationships between the effective thermal conductivity and each parameter are some polynomial fitting curves with different orders. Weave type affects the change of effective thermal conductivity mainly through the numbers of different elements and their area ratios.

Originality/value

In this model, the formulas were created respectively to calculate the effective thermal conductivity of each element region and whole weave unit. The serial–parallel mixing characteristics of yarn and surrounding air are considered, as well as the compression coefficients of air layers. The results of this study can be further applied to the optimal design of mixture fabrics with different warp and filling yarn densities or different yarn thermal properties.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 February 2023

Arad Azizi, Fatemeh Hejripour, Jacob A. Goodman, Piyush A. Kulkarni, Xiaobo Chen, Guangwen Zhou and Scott N. Schiffres

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the…

Abstract

Purpose

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity.

Design/methodology/approach

The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity.

Findings

The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm3. The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains.

Practical implications

The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications.

Originality/value

To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.

Article
Publication date: 12 August 2022

Isaac Chukwuemezu Okereke, Mohammed S. Ismail, Derek Ingham, Kevin J. Hughes, Lin Ma and Mohamed Pourkashanian

This paper aims to numerically investigate the impact of gas diffusion layer (GDL) anisotropic transport properties on the overall and local performance of polymer electrolyte…

286

Abstract

Purpose

This paper aims to numerically investigate the impact of gas diffusion layer (GDL) anisotropic transport properties on the overall and local performance of polymer electrolyte fuel cells (PEFCs).

Design/methodology/approach

A three-dimensional numerical model of a polymer electrolyte fuel cell with a single straight channel has been developed to investigate the sensitivity of the fuel cell performance to the GDL anisotropic transport properties – gas permeability, diffusivity, thermal conductivity and electrical conductivity. Realistic experimentally estimated GDL transport properties were incorporated into the developed PEFC model, and a parametric study was performed to show the effect of these properties on fuel cell performance and the distribution of the key variables of current density and oxygen concentration within the cathode GDL.

Findings

The results showed that the anisotropy of the GDL must be captured to avoid overestimation/underestimation of the performance of the modelled fuel cell. The results also showed that the fuel cell performance and the distributions of current density and oxygen mass fraction within the cathode GDL are highly sensitive to the through-plane electrical conductivity of the GDL and, to a lesser extent, the through-plane diffusivity, and the thermal conductivity of the GDL. The fuel cell performance is almost insensitive to the gas permeability of the GDL.

Practical implications

This study improves the understanding of the importance of the GDL anisotropy in the modelling of fuel cells and provides useful insights on improving the efficiency of the fuel cells.

Originality/value

Realistic experimentally estimated GDL transport properties have been incorporated into the PEFC model for the first time, allowing for more accurate prediction of the PEFC performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

Guoqiang Wu, Zhaowei Sun, Xianren Kong and Dan Zhao

Combining the characteristic of satellite “minisize nucleus” non‐equilibrium molecular dynamics (NEMD) method is used. We select corresponding Tersoff potential energy function to…

Abstract

Purpose

Combining the characteristic of satellite “minisize nucleus” non‐equilibrium molecular dynamics (NEMD) method is used. We select corresponding Tersoff potential energy function to build model and, respectively, simulate thermal conductivities of silicon nanometer thin film.

Design/methodology/approach

NEMD method is used, and the corresponding Tersoff potential energy function is used to build model.

Findings

The thermal conductivities of silicon nanometer thin film are markedly below the corresponding thermal conductivities of their crystals under identical temperature. The thermal conductivities are rising with the increase of thickness of thin film; what's more, the conductivities have a linear approximation with thickness of the thin film.

Research limitations/implications

It is difficult to do physics experiment.

Practical implications

The findings have some theory guidance to analyze satellite thermal control.

Originality/value

The calculation results of thermal conductivities specify distinct size effect. The normal direction thick film thermal conductivity of silicon crystal declines with the increasing temperature. The thermal conductivities are rising with the increase of thickness of thin film; what's more, the conductivities have a linear approximation with thickness of the thin film.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 March 2006

Baodong Shao and Zhaowei Sun

To give a new method to calculate the thermal conductivity of thin films which thickness is less than micro‐nanometer when non‐Fourier effect will appear in heat conduction and…

Abstract

Purpose

To give a new method to calculate the thermal conductivity of thin films which thickness is less than micro‐nanometer when non‐Fourier effect will appear in heat conduction and Fourier law is not applicable for calculating the thermal conductivity.

Design/methodology/approach

The Cattaneo equation based on the heat flow relaxation time approximation is used to calculate the thermal conductivity.

Findings

The results show that the thermal conductivity is not the thermophysical properties of material, but is the non‐linear function of temperature and film thickness when the dimension of film is less than micro‐nanometer.

Research limitations/implications

The application of this method is limited by little experimental data of heat flow relaxation time for materials other than Ar crystals.

Originality/value

The paper demonstrates how the thermal conductivity of Ar crystals film can be calculated by NEMD algorithm and considers the non‐Fourier effect in the simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 2 February 2015

Shuo Xiao, Yang Zhao, Yuan Cao, Haifeng Jiang and Wenliang Zhu

– This paper aims to deduce a set of theory computational formula, and optimize and improve the heat conductivity of vias in printed circuit boards of electrical power apparatus.

Abstract

Purpose

This paper aims to deduce a set of theory computational formula, and optimize and improve the heat conductivity of vias in printed circuit boards of electrical power apparatus.

Design/methodology/approach

The authors adopted numerical simulation and experimental measurement to verify the reliability of this formula.

Findings

Research result showed that 0.45 mm was the optimal bore diameter of vias; the conductivity had no obvious improvement when filling material was FR4 or Rogers, but if it was filled with texture of high thermal conductivity like soldering tine, the conductivity would improve a lot; the plating thickness of vias had a greater influence on thermal conductivity.

Originality/value

Through the theory computational formula, this paper studied the influence of aperture of vias, filled materials and thickness of copper plated on vias on thermal conductivity.

Details

Circuit World, vol. 41 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 March 2018

Shu-hao Deng, Yu Wang and Xi Yang

The purpose of this paper is to improve the conductivity and processability of polyaniline (PANI).

Abstract

Purpose

The purpose of this paper is to improve the conductivity and processability of polyaniline (PANI).

Design/methodology/approach

The study opted for synthesis of the conductive PANI/polyvinyl alcohol (PVA) composite film, co-doped with 5-sulphosalicylic acid and sulphuric acid. Using an electrochemical method, a small amount of silver (Ag) was electrodeposited on the film. The PVA/PANI and PVA/PANI/Ag composite films were characterised by scanning electron microscope, X-ray diffraction and infrared. The composite deposition mechanism of the composite film was investigated by cyclic voltammetry for the first time.

Findings

The conductivity of the optimum PVA/PANI composite film reached 21.2 S · cm−1.Then, a small amount of Ag was deposited on the PVA/PANI film, and the conductivity significantly increased by 1250 S · cm−1. Through appropriate degree of stretching, the conductivity of the films was enhanced. The results indicate that uniform PVA/PANI fibres and dendritic Ag can combine to form complete three-dimensional conductive networks that exhibit better conductivity and mechanical properties. The cyclic voltammetry curves reveal that the dedoping potential of PANI was more negative than the reduction potential of Ag. Therefore, the procedure for the deposition of Ag on the PANI/PVA composite film cannot decrease the conductivity.

Practical implications

This paper for the first time described and revealed the effective and practical synthesis approach and composite mechanism to prepare multi-types metal-conductive polymer composites and improve the conductivity of a conductive polymer with a less expense and one-step electrochemical method.

Originality/value

This paper first explored galvanostatic oxidation to synthesise a PANI composite film to resolve the processability and conductivity of PANI by co-doped with mixed acids and deposited Ag on film. Furthermore, for the first time, the composite mechanism of metal and conductive polymer was studied.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 8000