Search results

1 – 10 of 57
Article
Publication date: 16 January 2024

Mohamed Abd Alsamieh

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of…

Abstract

Purpose

In this study a numerical analysis of the elastohydrodynamic lubrication point contact problem in the unsteady state of reciprocating motion is presented. The effects of frequency, stroke length and load on film thickness and pressure variation during one operating cycle are discussed. The general tribological behavior of elastohydrodynamic lubrication during reciprocating motion is explained.

Design/methodology/approach

The system of equations of Reynolds, film thickness considering surface deformation and load balance equations are solved using the Newton-Raphson technique with the Gauss-Seidel iteration method. Numerical solutions were performed with a sinusoidal contact surface velocity to simulate reciprocating elastohydrodynamics. The methodology is validated using historical experimental measurements/observations and numerical predictions from other researchers.

Findings

The numerical results showed that the change in oil film during a stroke is controlled by both wedge and squeeze effects. When the surface velocity is zero at the stroke end, the squeeze effect is most noticeable. As the frequency increases, the general trend of central and minimum film thickness increases. With the same entraining speed but different stroke lengths, the properties of the oil film differ from one another, with an increase in stroke length leading to a reduction in film thickness. Finally, the numerical results showed that the overall film thickness decreases with increasing load.

Originality/value

General tribological behaviors of elastohydrodynamic lubricating point contact, represented by pressure and film thickness variations over time and profiles, are analyzed under reciprocating motion during one working cycle to show the effects of frequency, stroke length and applied load.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 February 2024

Rajesh Shah, Blerim Gashi, Vikram Mittal, Andreas Rosenkranz and Shuoran Du

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of…

Abstract

Purpose

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of tribological systems, researchers tend to use quantitative and qualitative analysis to monitor critical parameters and material characterization to explain observed dependencies. In this regard, numerical modeling and simulation offers a cost-effective alternative to physical experimentation but must be validated with limited testing. This paper aims to highlight advances in numerical modeling as they relate to the field of tribology.

Design/methodology/approach

This study performed an in-depth literature review for the field of modeling and simulation as it relates to tribology. The authors initially looked at the application of foundational studies (e.g. Stribeck) to understand the gaps in the current knowledge set. The authors then evaluated a number of modern developments related to contact mechanics, surface roughness, tribofilm formation and fluid-film layers. In particular, it looked at key fields driving tribology models including nanoparticle research and prosthetics. The study then sought out to understand the future trends in this research field.

Findings

The field of tribology, numerical modeling has shown to be a powerful tool, which is both time- and cost-effective when compared to standard bench testing. The characterization of tribological systems of interest fundamentally stems from the lubrication regimes designated in the Stribeck curve. The prediction of tribofilm formation, film thickness variation, fluid properties, asperity contact and surface deformation as well as the continuously changing interactions between such parameters is an essential challenge for proper modeling.

Originality/value

This paper highlights the major numerical modeling achievements in various disciplines and discusses their efficacy, assumptions and limitations in tribology research.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0076/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 October 2023

Yi Shen, Tao He and Xiaoya Gong

Harmonic gears always work under different operating conditions and may usually break down due to lubrication failures, while its lubrication mechanism is still not clearly…

Abstract

Purpose

Harmonic gears always work under different operating conditions and may usually break down due to lubrication failures, while its lubrication mechanism is still not clearly understood. This paper aims to present a lubrication model comprehensively considering the influence of contact geometry, lubrication properties and three-dimensional (3D) real surface roughness to analyze the lubrication performance under different conditions.

Design/methodology/approach

Based on the discrete convolution-fast Fourier transformation with duplicated padding and quasi-system numerical methods, the lubrication model for harmonic gears is developed, which is verified by comparing results with available lubrication data.

Findings

The effects of meshing process, working conditions and 3D roughness on the lubrication characteristics are discussed. From the calculated cases, the increase in rotational speed and decrease of applied torque may increase the film thickness, enhancing the lubrication performance of harmonic gears. It is also observed that proper surface roughness can be used for lubrication design.

Originality/value

The research results can provide theoretical guidance for improving lubrication performance and reducing friction/wear of the harmonic gear interfaces. This study can be promoted to various engineering scenarios of harmonic gears, such as industrial robots, space-driven agencies and precision measuring instruments.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2023

Aiman Yahaya, Syahrullail Samion and Mohd Kameil Abdul Hamid

The purpose of this study is to investigate the use of micro-pits technology to the problem of tribological performance in a sliding motion.

Abstract

Purpose

The purpose of this study is to investigate the use of micro-pits technology to the problem of tribological performance in a sliding motion.

Design/methodology/approach

Vegetable oil is a sustainable and economically viable alternative to both mineral and synthetic oils, offering significant savings in both the cost of research and manufacturing. To solve the depriving issue and boost lubrication film thickness, the micro-pits on the surface may function as reservoirs that provide the oil to the contact inlet area. In this research, an aluminium block is used as the workpiece material in an evaluation of a through pin-on-disc tribotester. Lubricating oil in the form of super olein (SO) was used in the experiment.

Findings

The results show that the friction performance during a rubbing process between a hemispherical pin and an aluminium block lubricated with SO using aluminium alloy materials, AA5083, was significantly improved.

Originality/value

In this study, a material that breaks down called SO, which is derived from the fractionation of palm olein, was used to use a modified aluminium micro-pit sample that will serve as a lubricant reservoir in pin-on-disc tribotester.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0200/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 September 2023

Deepak Byotra and Sanjay Sharma

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing…

Abstract

Purpose

This study aims to understand how the texture shape, number of textures and addition of nanoparticle additives in lubricants impact the dynamic characteristics of journal bearing by comparing six different texture shapes like triangle, chevron, arc, circle, rectangle and elliptical applied in pressure-increasing region under various geometrical and operating conditions.

Design/methodology/approach

The finite element method approach has been employed to solve governing Reynold’s equation, assuming iso-viscous Newtonian fluid, for computation of performance parameters like stiffness and damping coefficient, threshold speed, etc. By using a regression model, the impact of adding nanoparticles Al2O3 and CuO to the base lubricant on viscosity variation is calculated for selected temperature ranges and weight fractions of nanoparticles.

Findings

The arc-shaped texture with an area density of 28.27%, eccentricity ratio of 0.2 and texture depth of 0.6 exhibited 35.22% higher direct stiffness and 41.4% higher damping coefficient compared to the lowest value in the circle-shaped texture. Increasing the number of arc-shaped textures on the bearing surface with low area density led to declining stiffness and damping parameters. However, with nanoparticle additives, the arc-shaped texture further showed 10.75% and 8.11% improvement in stiffness and 9.99% and 4.87% enhancement in damping coefficient for Al2O3 and CuO, respectively, at 90 °C temperature and 0.5% weight fraction.

Originality/value

By understanding the influence of texture shapes on the dynamic characteristics, engineers can design bearings that exhibit improved stability and enhance overall performance.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 November 2023

Zhongkai Shen, Shaojun Li, Zhenpeng Wu, Bowen Dong, Wenyan Luo and Liangcai Zeng

This study aims to investigate the effects of irregular groove textures on the friction and wear performance of sliding contact surfaces. These textures possess multiple depths…

Abstract

Purpose

This study aims to investigate the effects of irregular groove textures on the friction and wear performance of sliding contact surfaces. These textures possess multiple depths and asymmetrical features. To optimize the irregular groove texture structure of the sliding contact surface, an adaptive genetic algorithm was used for research and optimization purposes.

Design/methodology/approach

Using adaptive genetic algorithm as an optimization tool, numerical simulations were conducted on surface textures by establishing a dimensionless form of the Reynolds equation and setting appropriate boundary conditions. An adaptive genetic algorithm program in MATLAB was established. Genetic iterative methods were used to calculate the optimal texture structure. Genetic individuals were selected through fitness comparison. The depth of the groove texture is gradually adjusted through genetic crossover, mutation, and mutation operations. The optimal groove structure was ultimately obtained by comparing the bearing capacity and pressure of different generations of micro-convex bodies.

Findings

After about 100 generations of iteration, the distribution of grooved textures became relatively stable, and after about 320 generations, the depth and distribution of groove textures reached their optimal structure. At this stage, irregular texture structures can support more loads by forming oil films. Compared with regular textures, the friction coefficient of irregular textures decreased by nearly 47.01%, while the carrying capacity of lubricating oil films increased by 54.57%. The research results show that irregular texture structures have better lubrication characteristics and can effectively improve the friction performance of component surfaces.

Originality/value

Surface textures can enhance the friction and lubrication performance of metal surfaces, improving the mechanical performance and lifespan of components. However, surface texture processing is challenging, as it often requires multiple experimental comparisons to determine the optimal texture structure, resulting in high trial-and-error costs. By using an adaptive genetic algorithm as an optimization tool, the optimal surface groove structure can be obtained through simulation and modeling, effectively saving costs in the process.

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 January 2024

Kai Xu, Ying Xiao and Xudong Cheng

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional…

Abstract

Purpose

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional lubricants. The experiment aims to analyze whether nanoadditive lubricants can effectively reduce gear vibration and noise under different speeds and loads. It also analyzes the sensitivity of the vibration reduction to load and speed changes. In addition, it compares the axial and radial vibration reduction effects. The goal is to explore the application of nanolubricants for vibration damping and noise reduction in gear transmissions. The results provide a basis for further research on nanolubricant effects under high-speed conditions.

Design/methodology/approach

Helical gears of 20CrMnTi were lubricated with conventional oil and nanoadditive oils. An open helical gearbox with spray lubrication was tested under different speeds (200–500 rpm) and loads (20–100 N·m). Gear noise was measured by a sound level meter. Axial and radial vibrations were detected using an M+P VibRunner system and fast Fourier transform analysis. Vibration spectrums under conventional and nanolubrication were compared. Gear tooth surfaces were observed after testing. The experiment aimed to analyze the noise and vibration reduction effects of nanoadditive lubricants on helical gears and the sensitivity to load and speed.

Findings

The key findings are that nanoadditive lubricants significantly reduce the axial and radial vibrations of helical gears under low-speed conditions compared with conventional lubricants, with a more pronounced effect on axial vibrations. The vibration reduction is more sensitive to rotational speed than load. At the same load and speed, nanolubrication reduces noise by 2%–5% versus conventional lubrication. Nanoparticles change the friction from sliding to rolling and compensate for meshing errors, leading to smoother vibrations. The nanolubricants alter the gear tooth surfaces and optimize the microtopography. The results provide a basis for exploring nanolubricant effects under high speeds.

Originality/value

The originality and value of this work is the experimental analysis of the effects of nanoadditive lubricants on the vibration and noise characteristics of hard tooth surface helical gears, which has rarely been studied before. The comparative results under different speeds and loads provide new insights into the vibration damping capabilities of nanolubricants in gear transmissions. The findings reveal the higher sensitivity to rotational speed versus load and the differences in axial and radial vibration reduction. The exploration of nanolubricant effects on gear tribological performance and surface interactions provides a valuable reference for further research, especially under higher speed conditions closer to real applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0220/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2024

Guibin Tan, Jinfu Li, Cheng Zhou, Ziwei Luo, Xing Huang and Fei Guo

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the…

Abstract

Purpose

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the influence of different eccentric forms, eccentricity, rotational speed and other factors on the performance of the rotary lip seal.

Design/methodology/approach

A numerical simulation model for high-speed eccentric rotary lip seals has been developed based on the theory of elastic hydrodynamic lubrication. This model comprehensively considers the coupling of multiple physical fields, including interface hydrodynamics, macroscopic solid mechanics and surface microscopic contact mechanics, under the operating conditions of rotary lip seals. The model takes into account eccentricity and uses the hazardous cross-sectional method to quantitatively predict sealing performance parameters, such as leakage rate and friction force.

Findings

Eccentricity has a large impact on lip seal performance; lips are more susceptible to wear failure under static eccentricity and to leakage failure under dynamic eccentricity.

Originality/value

This study provides a new idea for the design of rotary lip seal considering eccentricity, which is of guiding significance for the engineering application of rotary lip seal.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 57