Search results

1 – 10 of over 4000
Article
Publication date: 9 May 2022

Yanhong Yan, Xiaocui Yan, Chengwen Yang, Yanfei Zhou, Zhining Jia and Caizhe Hao

The purpose of this study is to improve the dispersion of nanoserpentine modified with OA, KH550 and KH550/oleic acid in lubricating oil. The main aims are to analyze the…

Abstract

Purpose

The purpose of this study is to improve the dispersion of nanoserpentine modified with OA, KH550 and KH550/oleic acid in lubricating oil. The main aims are to analyze the influence of the dispersion and stability of nanoserpentine modified by different modifiers on the friction properties of lubricating oil.

Design/methodology/approach

The nanoserpentine particles obtained by ball-milling were modified by silane coupling agent KH550, OA and KH550/OA, respectively. The dispersity and stability of nanoserpentine in base lubricating oil were characterized by the absorbance value method, centrifuge precipitation rate method and static observation method. The MMU-5G screen display friction and wear tester was used to evaluate the tribological properties of C45E4/C45E4 friction pairs in corresponding lubricating oils. The surface morphology of the friction pairs was observed by scanning electron microscopy and energy dispersive spectroscopy.

Findings

The results showed that the dispersity and stability of nanoserpentine particles in lubricating oil were best modified by OA, followed by the KH550/OA and finally, the KH550. Nanoserpentine particles modified with oleic acid showed optimum tribological properties as lubricant additives.

Originality/value

This study can improve the dispersion stability of nanoserpentine particles in lubricating oil, increasing the antiwear and antifriction performance of lubricating oil, which has great significance in economic and military aspects.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 July 2022

Xin Kuang, Bifeng Yin, Jian Wang, Hekun Jia and Bo Xu

The purpose of this paper is to evaluate the dispersion stability and the wear properties of lubricating oil blends added with modified nanometer cerium oxide (CeO2) at high…

Abstract

Purpose

The purpose of this paper is to evaluate the dispersion stability and the wear properties of lubricating oil blends added with modified nanometer cerium oxide (CeO2) at high temperature.

Design/methodology/approach

In this paper, CeO2 was self-made and it was chemically modified. The dispersion stability of CeO2 in lubricating oil was studied. And the wear test of lubricating oil blends added with modified CeO2 was carried out at high temperature.

Findings

The results showed that CeO2 was successfully modified by oleic acid and stearic acid. The dispersion stability of modified CeO2 in lubricating oil was improved. Adding modified nano-CeO2 with the concentration less than 50 ppm into the lubricating oil can improve the wear properties of friction pairs in different extent. With the increase of the amount of CeO2, the wear properties increased first and then decreased. The lubricating oil blend added with 25 ppm CeO2 has the best wear properties.

Originality/value

The raw material CeO2 in this paper is self-made and its shape and size are well controlled. Research on the addition of nano-CeO2 to the engine low viscosity finished lubricants is lacking. It is of great significance to study the dispersion stability and tribological properties of nano-lubricants under the new background of low viscosity of lubricating oil and close to the real engine working conditions. It has certain significance to promote the development of nano-lubricants for engines.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 October 2019

Hongru Ma, Xiaobin Deng, Xiaoliang Shi, Guanchen Lu, Hongyan Zhou, Yuan Chen and Zhenyu Yang

This paper aims to explore the damage mechanism of a lubricating film on the worn surface of solid self-lubricating composites under different loads.

Abstract

Purpose

This paper aims to explore the damage mechanism of a lubricating film on the worn surface of solid self-lubricating composites under different loads.

Design/methodology/approach

By comparing the actual stress with the strength, it is possible to determine the approximate wear state of the lubricating film. To prove the validity of the mathematical model that can predict the initiation of micro cracks or even the failure of the lubricating film, M50-5 Wt.% Ag self-lubricating composites (MA) was prepared. Tribological tests of the composites against Si3N4 ceramic balls were conducted at room temperature from 2 to 8 N. The electron probe microanalysis images of the lubricating film verify the wear state of the lubricating film.

Findings

The study found that the back edge of the contact area is the most vulnerable to destruction. The tensile stress and the equivalent shear stress have a positive correlation with load and friction coefficient. When the load is 4 N, an intact lubricating film covers the worn surface because the tensile stress and the equivalent shear stress are below the tensile strength and the shear strength, respectively; under other working conditions, the lubricating film is destroyed.

Originality/value

This paper has certain theoretical guidance for the study of tribological properties of solid self-lubricating composites. Moreover, this mathematical model is appropriate to be applied for the other composites.

Article
Publication date: 20 October 2020

Bin Xiao, Xiaolin Zheng, Yi Zhou, Dan Yao and Yang Wan

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Abstract

Purpose

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Design/methodology/approach

The water-lubricated rubber bearings under various normal loads and sliding speeds were carried out on the ring-block friction test, and the wear morphology is test conducted by using scanning electron microscope.

Findings

The results indicate that the surface of water-lubricated rubber bearings has a more alternative friction coefficient and wear rate under seawater than other lubricate conditions. The seawater not only acts as a lubricating medium but also brings microstructure while corroding the rubber interface, thereby further enhancing the lubricating effect and storing abrasive debris.

Originality/value

In this paper, tribological properties of the water-lubricated rubber bearing on ring-block friction test has been investigated. Water-lubricated rubber bearing was carried out on various lubricate conditions, and the friction coefficient, wear rate and worn surface were analyzed. Also, the effects of sliding speeds were investigated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0204/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2024

Jun Cheng and Chunxing Gu

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water…

Abstract

Purpose

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.

Design/methodology/approach

This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.

Findings

According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.

Originality/value

In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2005

Yajun Ma, Wancheng Zhao, Shenghua Li, Yuansheng Jin, Yucong Wang and Tung C. Simon

Improved fuel economy, lower emission and longer durability are the major developing trends of engine oils. Aims to describe further research on the friction coefficient of engine…

Abstract

Purpose

Improved fuel economy, lower emission and longer durability are the major developing trends of engine oils. Aims to describe further research on the friction coefficient of engine oils.

Design/methodology/approach

The lubricating durability D was defined based on definition of three characteristic points Pd, PS, Pi and three key time lengths Td, Ts, Ti. Two kinds of engine oils, respectively, belonging to GF‐2 and GF‐3 categories, were selected as samples to compare their lubricating durability.

Findings

Test results indicate the GF‐3 oil has much better lubricating durability than GF‐2 oil. With investigation of the topography and chemical composition changes of wear tracks along with the tribotests' time extending, the meanings of three characteristic points were discussed. Analysis indicates much better tribofilm, formed by the synergistic effect of Ca‐containing detergent with MoDTC/ZDTP in GF‐3 oil, is the major factor resulting in GF‐3 oil's longer lubricating durability.

Originality/value

Provides further research on lubricating durability, which is important for engine oil change and maintenance, as well as decreased cost and pollution to the environment, and improved energy conservation.

Details

Industrial Lubrication and Tribology, vol. 57 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 August 2020

Wei Feng, Lei Yin, Yanfeng Han, Jiaxu Wang, Ke Xiao and Junyang Li

This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the…

Abstract

Purpose

This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the action of polytetrafluoroethylene (PTFE) particles and water lubrication.

Design/methodology/approach

A group of experimental studies was carried out on a ring-on-block friction test. The physical properties, tribological properties and interface structure of PTFE-NBR self-lubricating composites filled with different percentages of PTFE particles were investigated.

Findings

The experimental results indicated that the reduction in friction and wear is a result of the formation of the lubricating film on the surface of the composites. The lubricating film was formed of a large amount of PTFE particles continuously supplied under water lubrication conditions and the PTFE particles here can greatly enhance the load capacity and lubrication performance.

Originality/value

In this study, the tribological properties of PTFE particles added to the NBR water-lubricated bearing materials under water lubrication were investigated experimentally, and the research was carried out by a ring-on-block friction test. It is believed that this study can provide some guidance for the application of PTFE-NBR self-lubricating.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0187/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 June 2014

Tiedan Chen, Yanqiu Xia, Zhilu Liu and Zeyun Wang

The mixture of attapulgite and bentonite was used as a thickener, and polyalphaolefin was used as the base oil to prepare the new lubricating grease. Some solid particles such as…

Abstract

Purpose

The mixture of attapulgite and bentonite was used as a thickener, and polyalphaolefin was used as the base oil to prepare the new lubricating grease. Some solid particles such as Polytetrafluoroethene (PTFE), MoS2, nano-calcium carbonate and graphite were added in the new lubricating grease as anti-wear additives to investigate the tribological sensitivity.

Design/methodology/approach

The new lubricating grease was evaluated by optimol-SRV reciprocating friction and wear tester, and the wear volumes were determined using a MicroXAM-3D. At the same time, the dropping point and the cone penetration were investigated and analyzed. The tribological properties of the new lubricating grease and the sensitivity of some solid lubricating additives to the new lubricating base grease were investigated; pure organic-bentonite and pure organic-attapulgite base grease were used as contrast.

Findings

The new lubricating grease based on the surface-modified bentonite/attapulgite clay base grease was synthesized with a relatively high dropping point, and the mass ratio is 25/75 bentonite/attapulgite clay base grease, having a better tribological performance. MoS2 was used as an anti-wear additive that has good tribological sensitivity to the new lubricating base grease.

Originality/value

The main innovative thought of this work lies in the mixture of attapulgite and bentonite used as thickener. A relevant report is not available at present.

Details

Industrial Lubrication and Tribology, vol. 66 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Fei Yan, Ziyu Wang, Yuchen Du, Shijie Su, Yan Zheng and Qinfeng Li

This paper aims to investigate the flow characteristics of lubricating grease in extremely cold weather in which it is difficult to convey the grease due to a huge pressure drop.

Abstract

Purpose

This paper aims to investigate the flow characteristics of lubricating grease in extremely cold weather in which it is difficult to convey the grease due to a huge pressure drop.

Design/methodology/approach

The rheological behavior of grease at various temperatures is studied by a rotary rheometer to determine the constitutive equation of lubricating grease. Based on the Herschel–Bulkley (H–B) model, the flow pattern of grease is then simulated by computational fluid dynamics and compared with the test results.

Findings

The yield stress increased dramatically when the shear rate was less than 1s−1 in the rheological experiments of continuous shear mode, and the phenomenon was more significant with the decrease in temperature. The rheological data obtained from the continuous shear mode agrees with the H–B equation after the shear thinned. In extremely cold conditions, there is a large yield stress in the lubricating grease; the numerical results show that the viscosity of lubricating grease increased with an increase in temperature, and the viscosity and velocity of lubricating grease showed uneven distribution leading to difficulty of lubricating grease delivery.

Originality/value

This paper focuses on the flow characteristics of lubricating grease in extremely cold area conditions which is studied rarely. In addition, the continuous shear model and oscillatory model are combined to establish the constitutive equations. Experiment and numerical simulation method are all used by establishing the H–B models.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 4000