Search results

1 – 10 of over 28000
To view the access options for this content please click here
Article

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article

Vahed Ghiasi, Husaini Omar, Bujang B. Kim Huat, Ratnasamy Muniandi, B. Zainuddin and Yusof

The purpose of this paper is to introduce the numerical methods in tunnel engineering and their capabilities to indicate the fracture and failure in all kinds of tunneling…

Abstract

Purpose

The purpose of this paper is to introduce the numerical methods in tunnel engineering and their capabilities to indicate the fracture and failure in all kinds of tunneling methods such as New Austrian Tunneling Method, tunnel boring machine and cut‐cover. An essential definition of numerical modeling of tunnels to determine the interaction between geo‐material (soil and rock) surrounding the tunnel structure is discussed.

Design/methodology/approach

Tunnel geo‐material (soil and rock) interaction requires advanced constitutive models for the numerical simulation of linear, nonlinear, time‐dependent, anisotropic, isotropic, homogenous and nonhomogeneous behaviors. The numerical models discussed in this paper are developed in finite element method (FEM), finite deference method (FDM), boundary element method and discrete element method and these tools are used to illustrate the behavior of tunnel structure deformation under different loads and in complicated conditions. The disadvantage of this method is the tunnel lining assumed an independent structure under fixed load which is unable to model soil‐lining interaction. Predicting the effect of all natural factors on tunnels is the most difficult method. The above‐mentioned numerical methods are very simple and quick to use and the results are conservative and practical for users. One of the most significant advantages of the numerical method is in predicting the critical area surrounding the tunnel and the tunnel structure before making the tunnel construction due to different loads.

Findings

Numerical modeling is used as control method in reducing the risk of tunnel construction failures. Since some factors such as settlement and deformation are not completely predictable in rock and soil surrounding the tunnel, using numerical modeling is a very economical and capable method in predicting the behavior of tunnel structures in various complicated conditions of loading. Another benefit of using numerical simulation is in the colorful illustrations predicting the tunnel behavior before, during and after construction and operation.

Originality/value

There are not many conducted studies using numerical models to tunnel structures that estimate the critical zones. As some of the methods available have limitation in simulating and modeling the whole tunnel design factors, numerical modeling seems to be the best option, because it is fast, economical, accurate and more interesting in predicating critical zones in tunnel. However, what softwares predict are not always the same as real ground nature conditions in which there is tunnel.

Details

Journal of Engineering, Design and Technology, vol. 9 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article

Somnath Santra, Shubhadeep Mandal and Suman Chakraborty

The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method…

Abstract

Purpose

The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The phase-field method is of emerging importance in numerical computation of transport phenomena involving multiple phases and/or components. This method is not only used to model interfacial phenomena typical to multiphase flows encountered in engineering and nature but also turns out to be a promising tool in modeling the dynamics of complex fluid-fluid interfaces encountered in physiological systems such as dynamics of vesicles and red blood cells). Intrinsically, a priori unknown topological evolution of interfaces offers to be the most concerning challenge toward accurate modeling of moving boundary problems. However, the numerical difficulties can be tackled simultaneously with numerical convenience and thermodynamic rigor in the paradigm of the phase field method.

Design/methodology/approach

The phase-field method replaces the macroscopically sharp interfaces separating the fluids by a diffuse transition layer where the interfacial forces are smoothly distributed. As against the moving mesh methods (Lagrangian) for the explicit tracking of interfaces, the phase-field method implicitly captures the same through the evolution of a phase-field function (Eulerian). In contrast to the deployment of an artificially smoothing function for the interface as used in the volume of a fluid or level set method, however, the phase-field method uses mixing free energy for describing the interface. This needs the consideration of an additional equation for an order parameter. The dynamic evolution of the system (equation for order parameter) can be described by AllenCahn or CahnHilliard formulation, which couples with the Navier–Stokes equation with the aid of a forcing function that depends on the chemical potential and the gradient of the order parameter.

Findings

In this review, first, the authors discuss the broad motivation and the fundamental theoretical foundation associated with phase-field modeling from the perspective of computational microfluidics. They subsequently pinpoint the outstanding numerical challenges, including estimations of the model-free parameters. They outline some numerical examples, including electrohydrodynamic flows, to demonstrate the efficacy of the method. Finally, they pinpoint various emerging issues and futuristic perspectives connecting the phase-field method and computational microfluidics.

Originality/value

This paper gives unique perspectives to future directions of research on this topic.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

George Markou and Manolis Papadrakakis

The purpose of this paper is to present a simplified hybrid modeling (HYMOD) approach which overcomes limitations regarding computational cost and permits the simulation…

Abstract

Purpose

The purpose of this paper is to present a simplified hybrid modeling (HYMOD) approach which overcomes limitations regarding computational cost and permits the simulation and prediction of the nonlinear inelastic behavior of full-scale RC structures.

Design/methodology/approach

The proposed HYMOD formulation was integrated in a research software ReConAn FEA and was numerically studied through the use of different numerical implementations. Then the method was used to model a full-scale two-storey RC building, in an attempt to demonstrate its numerical robustness and efficiency.

Findings

The numerical results performed demonstrate the advantages of the proposed hybrid numerical simulation for the prediction of the nonlinear ultimate limit state response of RC structures.

Originality/value

A new numerical modeling method based on finite element method is proposed for simulating accurately and with computational efficiency, the mechanical behavior of RC structures. Currently 3D detailed methods are used to model single structural members or small parts of RC structures. The proposed method overcomes the above constraints.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article

Yogesh Jaluria

Multiple length and time scales arise in a wide variety of practical and fundamental problems. It is important to obtain accurate and validated numerical simulation…

Abstract

Purpose

Multiple length and time scales arise in a wide variety of practical and fundamental problems. It is important to obtain accurate and validated numerical simulation results, considering the different scales that exist, in order to predict, design and optimize the behavior of practical thermal processes and systems. The purpose of this paper is to present modeling at the different length scales and then addresses the question of coupling the different models to obtain the overall model for the system or process.

Design/methodology/approach

Both numerical and experimental methods to obtain results at the different length scales, particularly at micro and nanoscales, are considered. Even though the paper focusses on length scales, multiple time scales lead to similar concerns and are also considered. The two circumstances considered in detail are multiple length scales in different domains and those in the same domain. These two cases have to be modeled quite differently in order to obtain a model for the overall process or system. The basic considerations involved in such a modeling are discussed. A wide range of thermal processes are considered and the methods that may be used are presented. The models employed must be validated and the accuracy of the simulation results established if the simulation results are to be used for prediction, control and design.

Findings

Of particular interest are concerns like verification and validation, imposition of appropriate boundary conditions, and modeling of complex, multimode transport phenomena in multiple scales. Additional effects such as viscous dissipation, surface tension, buoyancy and rarefaction that could arise and complicate the modeling are discussed. Uncertainties that arise in material properties and in boundary conditions are also important in design and optimization. Large variations in the geometry and coupled multiple regions are also discussed.

Research limitations/implications

The paper is largely focussed on multiple-scale considerations in thermal processes. Both numerical modeling/simulation and experimentation are considered, with the latter being used for validation and physical insight.

Practical implications

Several examples from materials processing, environmental flows and electronic systems, including data centers, are given to present the different techniques that may be used to achieve the desired level of accuracy and predictability.

Originality/value

Present state of the art and future needs in this interesting and challenging area are discussed, providing the impetus for further work. Different methods for treating multiscale problems are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Chunlei Shao, Aixia He, Zhongyuan Zhang and Jianfeng Zhou

The purpose of this paper is to study the transition process from the crystalline particles appearing before the pump inlet to the stable operation of the pump.

Abstract

Purpose

The purpose of this paper is to study the transition process from the crystalline particles appearing before the pump inlet to the stable operation of the pump.

Design/methodology/approach

Firstly, a modeling test method was put forward for the high-temperature molten salt pump. Then, according to a modeling test scheme, the experiment of the solid–liquid two-phase flow was carried out by using a model pump similar to the prototype pump. Meanwhile, the numerical method to simulate the transition process of a molten salt pump was studied, and the correctness of the numerical model was verified by the experimental results. Finally, the transition process of the molten salt pump was studied by the verified numerical model in detail.

Findings

In the simulation of the transition process, it is more accurate to judge the end of the transition process based on the unchanged particle volume fraction (PVF) at the pump outlet than on the periodic fluctuation of the outlet pressure. The outlet pressure is closely related to the PVF in the pump. The variation of the outlet pressure is slightly prior to that of the PVF at the pump outlet and mainly affected by the PVF in the impeller and volute. After 0.63 s, the PVF at each monitoring point changes periodically, and the time-averaged value does not change with time.

Practical implications

This study is of great significance to further improve the design method of molten salt pump and predict the abrasion characteristic of the pump due to interactions with solid particles.

Originality/value

A numerical method is established to simulate the transition process of a molten salt pump, and a method is proposed to verify the numerical model of two-phase flow by modeling test.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Yagho S. Simões, Fabio M. Rocha and Jorge Munaiar Neto

Isolated steel columns, when exposed to high temperatures, lose strength in a few minutes due to the high thermal conductivity of its constituent material. When these…

Abstract

Purpose

Isolated steel columns, when exposed to high temperatures, lose strength in a few minutes due to the high thermal conductivity of its constituent material. When these structural elements are embedded in walls, the response to exceptional action is altered so that the compartmentation offers an increase in the fire resistance of the columns. Therefore, the purpose of this paper is to analyze the behavior of steel columns inserted in walls subject to thermal action in a numerical context.

Design/methodology/approach

For this purpose, the computational code ABAQUS version 6.14, which applies the finite element method formulation to solve engineering problems, was used.

Findings

The thermo-mechanical modeling, considering the wall only as a compartmentation element, generated few consistent results, leading to the conclusion that the walls influence the structural response of columns in a fire situation.

Originality/value

There is a lack of both numerical and experimental research works. In numerical modeling, the research works found in the literature had difficulties in developing a numerical model that satisfactorily represented steel columns inserted in walls, not being able to adequately understand their behavior at high temperatures. All of them did not consider the influence of masonry on the thermo-structural behavior of the columns. In this paper, this influence was evaluated and discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

Łukasz Łach, Dmytro Svyetlichnyy and Robert Straka

A fundamental principle of materials engineering is that the microstructure of a material controls the properties. The phase transformation is an important phenomenon that…

Abstract

Purpose

A fundamental principle of materials engineering is that the microstructure of a material controls the properties. The phase transformation is an important phenomenon that determines the final microstructure. Recently, many analytical and numerical methods were used for modeling of phase transformation, but some limitations can be seen in relation to the choice of the shape of growing grains, introduction of varying grain growth rate and modeling of diffusion phenomena. There are also only few comprehensive studies that combine the final microstructure with the actual conditions of its formation. Therefore, the objective of the work is a development of a new hybrid model based on lattice Boltzmann method (LBM) and cellular automata (CA) for modeling of the diffusional phase transformations. The model has a modular structure and simulates three basic phenomena: carbon diffusion, heat flow and phase transformation. The purpose of this study is to develop a model of heat flow with consideration of enthalpy of transformation as one of the most important parts of the proposed new hybrid model. This is one of the stages in the development of the complex model, and the obtained results will be used in a combined solution of heat flow and carbon diffusion during the modeling of diffusion phase transformations.

Design/methodology/approach

Different values of overheating/overcooling affect different values in the enthalpy of transformation and thus the rate of transformation. CA and LBM are used in the hybrid model in part related to heat flow. LBM is used for modeling of heat flow, while CA is used for modeling of the microstructure evolution during the phase transformation.

Findings

The use of LBM and CA in one numerical solution creates completely new possibilities for modeling of phase transformations. CA and LBM in comparison with commonly used approaches significantly simplify interface and interaction between different parts of the model, which operates in a common domain. The CA can be used practically for all possible processes that consist of nucleation and grains growth. The advantages of the LBM method can be well used for the simulation of heat flow during the transformation, which is confirmed by numerical results.

Practical implications

The developed heat flow model will be combined with the carbon diffusion model at the next stage of work, and the new complex hybrid model at the final stage will provide new solutions in numerical simulation of phase transformations and will allow comprehensive modeling of the diffusional phase transformations in many processes. Heating, annealing and cooling can be considered.

Originality/value

The paper presents the developed model of heat flow (temperature module), which is one of the main parts of the new hybrid model devoted to modeling of phase transformation. The model takes into account the enthalpy of transformation, and the connection with the model of microstructure evolution was obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article

Raja Marudhappan, Chandrasekhar Udayagiri and Koni Hemachandra Reddy

The purpose of this paper is to formulate a structured approach to design an annular diffusion flame combustion chamber for use in the development of a 1,400 kW range aero…

Abstract

Purpose

The purpose of this paper is to formulate a structured approach to design an annular diffusion flame combustion chamber for use in the development of a 1,400 kW range aero turbo shaft engine. The purpose is extended to perform numerical combustion modeling by solving transient Favre Averaged Navier Stokes equations using realizable two equation k-e turbulence model and Discrete Ordinate radiation model. The presumed shape β-Probability Density Function (β-PDF) is used for turbulence chemistry interaction. The experiments are conducted on the real engine to validate the combustion chamber performance.

Design/methodology/approach

The combustor geometry is designed using the reference area method and semi-empirical correlations. The three dimensional combustor model is made using a commercial software. The numerical modeling of the combustion process is performed by following Eulerian approach. The functional testing of combustor was conducted to evaluate the performance.

Findings

The results obtained by the numerical modeling provide a detailed understanding of the combustor internal flow dynamics. The transient flame structures and streamline plots are presented. The velocity profiles obtained at different locations along the combustor by numerical modeling mostly go in-line with the previously published research works. The combustor exit temperature obtained by numerical modeling and experiment are found to be within the acceptable limit. These results form the basis of understanding the design procedure and opens-up avenues for further developments.

Research limitations/implications

Internal flow and combustion dynamics obtained from numerical simulation are not experimented owing to non-availability of adequate research facilities.

Practical implications

This study contributes toward the understanding of basic procedures and firsthand experience in the design aspects of combustors for aero-engine applications. This work also highlights one of the efficient, faster and economical aero gas turbine annular diffusion flame combustion chamber design and development.

Originality/value

The main novelty in this work is the incorporation of scoops in the dilution zone of the numerical model of combustion chamber to augment the effectiveness of cooling of combustion products to obtain the desired combustor exit temperature. The use of polyhedral cells for computational domain discretization in combustion modeling for aero engine application helps in achieving faster convergence and reliable predictions. The methodology and procedures presented in this work provide a basic understanding of the design aspects to the beginners working in the gas turbine combustors particularly meant for turbo shaft engines applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 28000