Search results

1 – 10 of 124
To view the access options for this content please click here
Article

Y. Zhang

To form and develop a new mode of mixed elastohydrodynamic lubrication (mixed EHL) which is more realistic and of more application values to a practical elastohydrodynamic

Abstract

Purpose

To form and develop a new mode of mixed elastohydrodynamic lubrication (mixed EHL) which is more realistic and of more application values to a practical elastohydrodynamic contact on gears, cams and roller bearings than the previous and current existing mixed EHL models.

Design/methodology/approach

The representative theoretical and experimental studies on elastohydrodynamic lubrication (EHL) and mixed EHL carried out in the previous and recent time, including those of the author, are reviewed. The obtained results on EHL and mixed EHL in those studies and the viewpoints on the mode of mixed EHL based on those results developed in those studies are compared and evaluated. Strong proves are formed on the new mode of mixed EHL proposed in the present paper based on these comparisons and evaluations.

Findings

Strong viewpoints are formed on the mode of the occurrence of dry contact in EHL in a practical concentrated contact. A new mode of mixed EHL is proposed by incorporating this mode of the occurrence of dry contact in EHL. Also, comments and evaluations on the previous researches on mixed EHL are made.

Practical implications

A very useful material for the engineers who are engaged in the design of EHL on gears, cams and roller bearings, and for the tribology scientists who thrust efforts in studying EHL and mixed EHL both by theoretical modeling and by experiments.

Originality/value

A new mode of mixed EHL is originally proposed by incorporating the finding of a more realistic mode of the occurrence of dry contact in EHL. This new mode of mixed EHL should become the direction of the theoretical research of mixed EHL in the future time. It provides a clearer way to this research.

Details

Industrial Lubrication and Tribology, vol. 57 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Y. Zhang

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and…

Abstract

This paper studies elastohydrodynamic lubrication (EHL) of line contacts for the slide‐roll ratios 0‐2 based on the assumptions of interfacial shear strength and interfacial slip. It is shown that the viscoelastic, viscoplastic and non‐continuum fluids distribute from the inlet zone to the Hertzian contact zone in order for a given operating condition when the load and rolling speed exceed critical values. For the rolling speed below the critical, the distributing fluids from the inlet zone to the Hertzian contact zone in order are viscoelastic and non‐continuum when the load exceeds a critical value. These show a multirheological behavior EHL film, formed in a contact, which may represent a mode of mixed lubrication. For this mode of lubrication, the fluid model should handle both inlet and Hertzian contact zones where the fluids are, respectively, continuum and non‐continuum. A new EHL analysis and theory, therefore needs to be established.

Details

Industrial Lubrication and Tribology, vol. 56 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Y. Zhang

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these…

Abstract

Purpose

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in elastohydrodynamic lubrication (EHL).

Design/methodology/approach

The experimental and theoretical research results of the contact‐fluid interfacial shear strength and its caused contact‐fluid interfacial slippage in hydrodynamic lubrication and especially in EHL obtained in the past decades and progressed in recent years by the present author and by others are reviewed. Analysis and presentation are made on both the contact‐fluid interfacial shear strength versus fluid pressure curve for a given bulk fluid temperature in an isothermal EHL and the influence of the bulk fluid temperature on this curve.

Findings

It is very clearly and well understood from the present paper that the value of the contact‐fluid interfacial shear strength in the inlet zone in an EHL contact, i.e. at low EHL fluid film pressures is usually low and usually has rather a weak dependence on the EHL fluid film pressure. This proves the correctness of the EHL theories previously developed by the author based on the assumption of this low value and dependence on the EHL fluid film pressure of the contact‐fluid interfacial shear strength. It is also very clearly understood that the bulk fluid temperature usually has a strong influence on the value of the contact‐fluid interfacial shear strength in EHL and the increase of this temperature usually significantly reduces the value of the contact‐fluid interfacial shear strength in EHL.

Practical implications

A very useful material for the engineers who are engaged in the design of EHL on gears, cams and roller bearings, and for the tribology scientists who thrust efforts in studying EHL and mixed EHL both by theoretical modeling and by experiments.

Originality/value

A new and generalized mode of mixed EHL is originally proposed by incorporating the finding of a more realistic mode of the contact regimes in a practical mixed EHL based on the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage effects. This mode of mixed EHL should become the direction of the theoretical research of mixed EHL in the future.

Details

Industrial Lubrication and Tribology, vol. 58 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Linlin Li and Jiajun Yang

The purpose of this paper is to study the effects of surface roughness on the lubrication performances of the linear rolling guide, which provides theoretical guidance for…

Abstract

Purpose

The purpose of this paper is to study the effects of surface roughness on the lubrication performances of the linear rolling guide, which provides theoretical guidance for its lubrication design.

Design/methodology/approach

The two-variable Weierstrass–Mandelbrot function is used to represent the random and multi-scale characteristics of the rough surface topography. The elastohydrodynamic lubrication (EHL) model of contact between the steel ball and raceway is built. The full numerical solutions of the pressure and film thickness are obtained by using the multi-grid technique.

Findings

The presence of surface roughness can cause the random fluctuations of the pressure and film thickness, and the fluctuations can become more dramatic for the rougher surfaces. It is also found that the film characteristics can be influenced significantly by the working conditions, such as the load, velocity and ambient viscosity of lubricants.

Originality/value

Characterization of surface topographies regarding EHL problems in the past studies cannot reflect random and multi-scale characteristics. In this paper, the fractal-based method is introduced to analysis of the point-contact micro-EHL. It reveals the mechanism and law of contact lubrication influenced by the fractal surface roughness and enriches the lubrication principle and method of the linear rolling guide.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Jiaxing Pei, Xu Han and Yourui Tao

The purpose of this paper is to propose an simple and efficient stiffness model for line contact under elastohydrodynamic lubrication (EHL) and to investigate the gear…

Abstract

Purpose

The purpose of this paper is to propose an simple and efficient stiffness model for line contact under elastohydrodynamic lubrication (EHL) and to investigate the gear meshing stiffness by the proposed model.

Design/methodology/approach

The method combines the surface contact stiffness and film stiffness as EHL contact stiffness. The EHL contact stiffness can be calculated by the external load and displacement of the load action point. The displacement is the sum of deformation of the film and contact surface and is equal to the distance of the mutual approach of two contact bodies.

Findings

The conclusion is drawn that the contact stiffness calculated by the proposed model is smaller than that by the minimum film model and larger than that by the mean film model. It is also concluded that the gear meshing stiffness under EHL is slightly smaller than that under dry contact.

Originality/value

The EHL contact stiffness can be obtained by the increment of external load and mutual approach directly. The calculation of oil film stiffness and surface contact stiffness separately is avoided.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0465

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Hui Zhang, Guangneng Dong and Guozhong Dong

The main purpose of this paper is to present the effort on developing a mixed elastohydrodynamic lubrication (EHL) model to study the tribological effect of asperities on…

Abstract

Purpose

The main purpose of this paper is to present the effort on developing a mixed elastohydrodynamic lubrication (EHL) model to study the tribological effect of asperities on rough surface.

Design/methodology/approach

The model, with the use of the average flow Reynolds equation and the K-E elasto-plastic contact model, allows predictions of hydrodynamic pressure and contact pressure on the virtual rough surface, respectively. Then, the substrate elastic deformation is calculated by discrete convolution fast-Fourier transform (DC-FFT) method to modify the film thickness recursively. Afterwards, corresponding ball-on-disk tests are conducted and the validity of the model demonstrated. Moreover, the effects of asperity features, such as roughness, curvature radius and asperity pattern factor, on the tribological properties of EHL, are also discussed though plotting corresponding Stribeck curves and film thickness shapes.

Findings

It is demonstrated that the current model predicts very close data compared with corresponding experimental results. And it has the advantage of high accuracy comparing with other typical models. Furthermore, smaller roughness, bigger asperity radius and transverse rough surface pattern are found to have lower friction coefficients in mixed EHL models.

Originality/value

This paper contributes toward developing a mixed EHL model to investigate the effect of surface roughness, which may be helpful to better understand partial EHL.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Yong Yang, Wenguang Li, Jiaxu Wang and Qinghua Zhou

The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real…

Abstract

Purpose

The purpose of this study is to investigate the tribological performance of helical gear pairs with consideration of the properties of non-Newtonian lubricant and the real three-dimensional (3D) topography of tooth flanks.

Design/methodology/approach

Based on the mixed elastohydrodynamic lubrication (EHL) theory for infinite line contact, this paper proposes a complete model for involute helical gear pairs considering the real 3D topography of tooth flanks and the properties of non-Newtonian lubricant. Film thickness, contact load and contact area ratios at the mid-point of contact line are studied for each angular displacement of pinion. Both the total friction coefficient and surface flash temperature are calculated after obtaining the values of pressure and subsurface stress. Then, the influences of input parameters including rotational speed and power are investigated.

Findings

During the meshing process, contact load ratio and area ratio of the two rough surface cases first increase and then decrease; the maximum flash temperature rise (MFTR) on the gear is lower than that on the pinion first, but later the situation converses. For cylindrical gears, on the plane of action, there is a point or a line where the instantaneous friction reduces to a minimum value in a sudden, as the sliding–rolling ratio becomes zero. When rotational speed increases, film thickness becomes larger, and meanwhile, contact load ratio, coefficient of friction and MFTR gradually reduce.

Originality/value

A comprehensive analysis is conducted and a computer program is developed for meshing geometry, kinematics, tooth contact, mixed EHL characteristics, friction, FTR and subsurface stress of involute helical gear pairs. Besides, a numerical simulation model is developed, which can be used to analyze mixed lubrication with 3D machined roughness under a wide range of operating conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Li‐Ming Chu

The purpose of this paper is to explore the pure squeeze thin film elastohydrodynamic lubrication (TFEHL) motion of circular contacts with adsorption layers attached to…

Abstract

Purpose

The purpose of this paper is to explore the pure squeeze thin film elastohydrodynamic lubrication (TFEHL) motion of circular contacts with adsorption layers attached to each surface under constant load condition. The proposed model can reasonably calculate the pressure distributions, film thicknesses, normal squeeze velocities, and effective viscosities during the pure squeeze process under thin film lubrication.

Design/methodology/approach

The transient modified Reynolds equation is derived in polar coordinates using viscous adsorption theory. The finite difference method and the Gauss‐Seidel iteration method are used to solve the transient modified Reynolds equation, the elasticity deformation equation, load balance equation, and lubricant rheology equations simultaneously.

Findings

The simulation results reveal that the thickness of the adsorption layer and the viscosity ratio significantly influence the lubrication characteristics of the contact conjunction in the thin film regime. In additional, the turning points in the film thickness which distinguish thin film lubrication from elastohydrodynamic lubrication curve is found. In thin film region, the effective viscosity predicted by present model is better than that predicted by traditional elastohydrodynamic theory.

Originality/value

The paper develops a numerical method for general applications with adsorption layers attached to each surface to investigate the pure squeeze action in a TFEHL spherical conjunction under constant load condition.

Details

Industrial Lubrication and Tribology, vol. 62 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Mohamed Abd Al-Samieh

This paper aims to investigate the effect of changing speed of the entraining motion on the formation of ultra-thin lubricating films under different elliptical ratios…

Abstract

Purpose

This paper aims to investigate the effect of changing speed of the entraining motion on the formation of ultra-thin lubricating films under different elliptical ratios. The ellipticity parameter (K) varied from 1 (a ball-on-plate configuration) to 6 (a configuration approaching line contact). The influence of the ellipticity parameters, the dimensionless speed and the effects of surface forces on the formation of the minimum film thickness has been demonstrated. The demarcation boundary between region dominated by elastohydrodynamic lubrication (EHL) and that by the surface force action has been demonstrated for different elliptical ratios.

Design/methodology/approach

The numerical solution has been carried out, using the Newton–Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The film thickness and pressure distribution are obtained by simultaneous solution of the Reynolds’ equation, the elastic deformation (caused by hydrodynamic pressure, surface force of solvation and Van der Waals force) and the load balance equation. The operating conditions, load and speed of entraining motion, promote formation of ultra-thin films that are formed under the combined action of EHL, surface contact force of solvation and molecular interactions due to presence of Van der Waals force.

Findings

The paper provides insights about the transition between region dominated by EHL and that by the surface force action for changing ellipticity ratio (K) from 1 (a ball-on-plate configuration) to 6 (a configuration approaching line contact).

Originality/value

This paper fulfils an identified need to study the effect of changing ellipticity ratio on the formation of ultra-thin films that are formed under the combined action of EHL, surface contact force of solvation and molecular interactions due to presence of Van der Waals force.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

Jianjun Zhang, Qibo Ni, Jing Wang and Feng Guo

Vibration exists widely in all machineries working under high speed. The unpredictability of vibration and the change of the relative surface speed may result in…

Abstract

Purpose

Vibration exists widely in all machineries working under high speed. The unpredictability of vibration and the change of the relative surface speed may result in difficulties in the elastohydrodynamic lubrication (EHL) analysis. By far, few studies on EHL relating to vibration have been published. The purpose of the present study is to investigate the effect of the vertical vibrations and the influence of temperature on the thermal EHL contacts.

Design/methodology/approach

The lubricant was assumed to be Newtonian fluid. The time-dependent numerical solutions were achieved instant after instant in each period of the vibration. At each instant, the pressure field was solved with a multi-level technique, the surface deformation was solved with a multi-level multi-integration method and the temperature filed was solved with a finite different scheme through a sweeping progress. The periodic error was checked at each end of the vibration period until the responses of pressure, film thickness and temperature were all periodic functions with the frequency of the roller’s vibrations.

Findings

The results reveal that normal vibration produces little drastic change of pressure, film thickness and temperature in EHL. Under some conditions, the vibrations of the roller can produce transient dimples within the contact conjunction. It is also showed that the lubrication in the same sliding is better than the opposite sliding.

Research limitations/implications

For the unpredictability of vibration, it is not easy to do the experiment to realize a real comparison with numerical results. The reach does not show any verification and consider the effect of non-Newtonian fluid.

Originality/value

The effect of the vertical vibrations on the thermal EHL point contact hast been studied. The effects of both the amplitude and the frequency on the predicted load-carrying capacity, minimum film thickness, center pressure and center temperature and the coefficient of friction were investigated. The role of the thermal effect was given.

Details

Industrial Lubrication and Tribology, vol. 68 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 124