Search results

1 – 10 of over 1000
Article
Publication date: 2 November 2018

Juan Du, Yuning He, Pingli Liu, Yigang Liu, Xianghai Meng and Liqiang Zhao

This paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation.

Abstract

Purpose

This paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation.

Design/methodology/approach

The corrosion rate, kinetic parameters (Ea, A) and thermodynamic parameters (ΔH, ΔS) of N80 steel in fresh acid and spent acid, 10 per cent HCl + 8 per cent HBF4, 10 per cent HCl and 8 per cent HBF4 solutions were calculated through immersion tests. The corrosion and inhibition properties were studied through X-ray diffraction and electrochemical measurements. The corrosion morphology of the corrosion product was examined by scanning electron microscopy (SEM).

Findings

The results demonstrated that the spent acid was the main cause of acidification corrosion, and the HBF4 would cause serious corrosion to N80 steel. The results showed that the N80 steel was more seriously corroded in the spent acid than in fresh acid, and the hydrolysis of HBF4 accelerates the dissolution process of N80 steel anode to control the corrosion reaction. The results showed that the acidification will definitely cause serious corrosion to the oil tube; therefore, necessary anti-corrosion measures must be taken in the acidification process.

Originality/value

The results showed that acidizing the formation with 10 per cent HCl + 8 per cent HBF4 will definitely cause serious corrosion to the oil tube, especially when the spent acid flows back. Therefore, necessary anti-corrosion measures must be taken in the acidification process, especially in the spent acid flowback stage.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 May 2023

I. Aliyu, S.M. Sapuan, E.S. Zainudin, M.Y.M. Zuhri and Y. Ridwan

The conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and…

Abstract

Purpose

The conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and corrosion rate of sugar palm fibre ash (SPFA) reinforced LM26 Al/alloy composite by varying the SPFA from 0 to 10 wt% in an interval of 2 wt%. This paper aims to discuss the aforementioned issue.

Design/methodology/approach

The composites were produced via stir-casting and the hardness was determined using a Vickers hardness testing machine, corrosion rate was examined through the weight loss method by immersion in 0.5, 1.0 and 1.5 M hydrochloric acid (HCl) at temperatures of 303, 318, and 333 K for the maximum duration of 120 h. The morphological study was conducted using a scanning electron microscope (SEM) on the samples before and after immersion in HCl.

Findings

The incorporation of SPFA improved the hardness of the alloy from 58.22 to 93.62 VH after 10 wt% addition. The corrosion rate increases with increased content of SPFA, the concentration of HCl and temperature. The least corrosion rate of 0.0272 mpy was observed for the LM26 Al alloy in 0.5 M after 24 h while the highest corrosion rate of 0.8511 mpy was recorded for LM26 Al/10 wt% SPFA in 1.5 M HCl acid after 120 h. The SEM image of corroded samples revealed an increased number of pits with increased SPFA content.

Research limitations/implications

The work is limited to SPFA up to 10 wt% as reinforcement in LM26 Al alloy, the use of HCl as corrosion medium, temperatures in the range of 303–333 K, and a weight loss method were used to evaluate the corrosion rate.

Originality/value

The corrosion rate was determined for LM26 Al/SPFA composites with various amounts of SPFA in 0.5, 1.0 and 1.5 M HCl at 303, 318 and 333 K and compared with the matrix alloy.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 December 2015

B.M. Prasanna, B.M. Praveen, Narayana Hebbar and T.V. Venkatesha

The purpose of this paper is to investigate the inhibition effect of hydralazine hydrochloride as a corrosion inhibitor for mild steel in 1M HCl. The inhibition effect was studied…

Abstract

Purpose

The purpose of this paper is to investigate the inhibition effect of hydralazine hydrochloride as a corrosion inhibitor for mild steel in 1M HCl. The inhibition effect was studied at different temperatures, ranging from 303 to 333°K.

Design/methodology/approach

The inhibition efficiency of hydralazine hydrochloride was analyzed using weight loss, Tafel polarization, electrochemical impedance spectroscopy and surface morphology methods. The effect of temperature on the corrosion behavior of mild steel in 1M HCl was studied and discussed using an adsorption isotherm and activation parameters.

Findings

Weight loss, polarization and impedance showed that the inhibition efficiency increases with an increase in the concentration of hydralazine hydrochloride for mild steel in 1M HCl. The inhibitive action may be attributed to the adsorption of the inhibitor molecule on the active sites of the metal surface by the Langmuir adsorption isotherm. Polarization curves indicated that hydralazine hydrochloride acts as a mixed-type inhibitor. Scanning electron microscopy was performed on inhibited and uninhibited mild steel samples to characterize the surface. Thermodynamic parameter indicated that the adsorption of hydralazine hydrochloride is a spontaneous process and the adsorption occurs chemically.

Originality/value

The inhibition effect of hydralazine hydrochloride for mild steel has been investigated at different temperatures, ranging from 303 to 333°K. Hydralazine hydrochloride was a good inhibitor at a higher temperature.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 January 2017

Bahram Ramezanzadeh, Milad Mehdipour, S.Y. Arman and M. Ramezanzadeh

This study attempts to investigate corrosion inhibition properties of 1H-benzimidazole (B) and 1H-benzotriazole (BTA) on aluminum in 0.25 M HCl solution at different…

Abstract

Purpose

This study attempts to investigate corrosion inhibition properties of 1H-benzimidazole (B) and 1H-benzotriazole (BTA) on aluminum in 0.25 M HCl solution at different concentrations.

Design/methodology/approach

To this end, electrochemical techniques including electrochemical noise (EN), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used.

Findings

Results showed a greater corrosion inhibition efficiency of BTA than B on aluminum in HCl solution. BTA showed greater tendency to adsorption on the metal surface than B because of the inclusion of three nitrogen atoms.

Originality/value

The novelty of this work is comparing EN data with EIS and potentiodynamic polarization parameters.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 June 2008

Ayssar Nahlé, Ideisan Abu‐Abdoun and Ibrahim Abdel‐Rahman

The purpose of this paper is to study electrochemically and by weight loss experiments the effect of 4‐vinylbenzyl triphenyl phosphonium chloride on the corrosion inhibition of…

Abstract

Purpose

The purpose of this paper is to study electrochemically and by weight loss experiments the effect of 4‐vinylbenzyl triphenyl phosphonium chloride on the corrosion inhibition of mild steel in 1.0 M HCl solution, which will serve researchers in the field of corrosion.

Design/methodology/approach

Electrochemical and weight loss measurements were carried out on carbon steel specimens in 1.0 M HCl and in 1.0 M HCl containing various concentrations (1.0 × 10−7 to 1.0 × 10−4 M) of the laboratory synthesized 4‐vinylbenzyl triphenyl phosphonium chloride at temperatures ranging from 303 to 343 K.

Findings

4‐vinylbenzyl triphenyl phosphonium chloride was found to be a highly efficient inhibitor for carbon steel in 1.0 M HCl solution, reaching about 99 per cent at the concentration of 1 × 10−4 M at room temperature and about 96 per cent at 303 K, a concentration and temperature considered to be very moderate. The percentage of inhibition in the presence of this inhibitor was decreased with temperature which indicates that physical adsorption was the predominant inhibition mechanism because the quantity of adsorbed inhibitor decreases with increasing temperature.

Practical implications

This inhibitor could have application in industries, where hydrochloric acid solutions at elevated temperatures are used to remove scale and salts from steel surfaces, such as acid cleaning of tankage and pipeline, and may render dismantling unnecessary.

Originality/value

This paper is intended to be added to the family of phosphonium salt corrosion inhibitors which are highly efficient and can be employed in the area of corrosion prevention and control.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Liqiang Zhao, Yanhua Zhu, Pingli Liu, Jian Zhang and Yigang Liu

This paper aims to describe the corrosion behavior and possibility of inhibition by corrosion inhibitor SA1-3 in acidizing solution (5 per cent hydrochloric acid [HCl] solution)…

Abstract

Purpose

This paper aims to describe the corrosion behavior and possibility of inhibition by corrosion inhibitor SA1-3 in acidizing solution (5 per cent hydrochloric acid [HCl] solution). The study aims to explain the mechanism of corrosion and inhibition of N80 steel in 5 per cent HCl solution to provide theoretical basis for expanding the range of application of N80 steel in acidification process.

Design/methodology/approach

This paper opted for a laboratory study using simulation of acidizing solution to do the experiments. The results of experiments including weight-loss method, electrochemical method and surface analysis were used to explain the mechanism of corrosion and inhibition so as to predict the dissolution progress of N80 steel in 5 per cent HCl solution with and without inhibitor SA1-3.

Findings

This paper provides theoretical insights about how to inhibit the corrosion behavior of N80 steel in 5 per cent HCl solution. It suggests that the corrosion inhibitor which can form a protective film on the steel surface should be used to expand the application of N80 steel in acidizing solution. The inhibitor SA1-3 is a kind of cathodic corrosion-controlling inhibitor which mainly inhibits cathode corrosion; it cannot change the corrosion mechanism of N80 steel.

Originality/value

This paper provides a theoretical basis for the corrosion behavior and inhibition mechanism of N80 steel in acidizing solution.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 27 May 2014

Ayssar Nahlé, Ibrahim Almaidoor and Ibrahim Abdel-Rahman

This study aims to study electrochemically and by weight-loss experiments the effect of UAE Rhazya Stricta Decne extract on the corrosion…

149

Abstract

Purpose

This study aims to study electrochemically and by weight-loss experiments the effect of UAE Rhazya Stricta Decne extract on the corrosion inhibition of mild steel in 1.0 M HCl solution, which will serve researchers in the field of corrosion.

Design/methodology/approach

Weight loss measurements were carried out on mild steel specimens in 1.0 M HCl and in 1.0 M HCl containing various concentrations (ranging from 2.0 to 0.002 g/L.) of the UAE Rhazya Stricta Decne extract at temperatures ranging from 303 to 343 K.

Findings

The aqueous Rhazya Stricta Decne leaves extract was found to be a highly efficient inhibitor for mild steel in 1.0 M HCl solution, reaching about 90 per cent at 2.0 g/L and 303 K, a concentration considered to be very moderate. Even with one-tenth of that concentration, 0.2 g/L, an inhibition of about 82 per cent was obtained at 303 K. The rate of corrosion of the mild steel in 1.0 M HCl is a function of the concentration of the Rhazya Stricta Decne extract. This rate increases as the concentration of the Rhazya Stricta Decne extract is increased. The percentage of inhibition in the presence of this inhibitor was decreased with temperature which indicates that physical adsorption was the predominant inhibition mechanism because the quantity of adsorbed inhibitor decreases with increasing temperature.

Practical implications

This inhibitor could have application in industries, where HCl solutions at elevated temperatures are used to remove scale and salts from steel surfaces, such as acid cleaning of tankage and pipeline, and may render dismantling unnecessary.

Originality/value

This paper is intended to be added to the family of green corrosion inhibitors which are highly efficient and can be used in the area of corrosion prevention and control.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 February 2021

Manickam Ramesh Kumar, Ramalingam Malathy, Sundararajan Paramasivam, Ill-Min Chung, Seung-Hyun Kim and Prabakaran Mayakrishnan

The textile industry is one of the largest and most important industrial sectors in India. Because the textile industry consumes large quantities of water and produces highly…

Abstract

Purpose

The textile industry is one of the largest and most important industrial sectors in India. Because the textile industry consumes large quantities of water and produces highly polluted water discharge, its environmental impact is high. Water is expensive to use, treat and dispose of. Therefore, water conservation and reuse are critical necessity for the textile industry because decreasing water and wastewater treatment and recycling costs can be beneficial.

Design/methodology/approach

This research neutralized the pH during dyeing industry wastewater treatment. The system should be robust to erroneous sensor measurements. A pH meter was developed and used to monitor the pH of wastewater hourly before and after HCl treatment.

Findings

HCl was used to neutralize the pH of wastewater from 9 to 7.5. The amount of HCl was optimized depending on the wastewater. Three wastewater treatment methods were used, namely, HCl, wash water and reverse osmosis (RO) treatments. The HCl treatment was the most effective for decreasing the pH; the wash water treatment was the most effective for decreasing the total dissolved solids (TDS), total suspended solids (TSS) total hardness and chemical oxygen demand; and the RO treatment was the most effective for decreasing the biochemical oxygen demand, TDS, TSS, total hardness and Cl concentration.

Originality/value

The pH should be monitored during the textile dyeing because the addition of color to textile fabrics is the most effective at neutral pH. This study evaluated several parameters of wastewater, including pH, color, TSS and TDS. The fabricated digital pH meter provided superior results than conventional measuring devices. The goal was to maintain a neutral pH during dyeing and recycle wastewater to improve environmental sustainability. The newly developed digital pH meter was less expensive and more precise than traditional pH meters. Before reusing and recycling, wastewater underwent ultrafiltration and RO treatment.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 April 2014

Mahendra Yadav, Sumit Kumar and Dipti Sharma

The purpose of this investigation was to evaluate the protective ability of 2-amino-N-octadecylacetamide (AOA) and 2-amino-N-octadecyl-3-(4-hydroxyphenyl) propionamide (AOHP) as…

Abstract

Purpose

The purpose of this investigation was to evaluate the protective ability of 2-amino-N-octadecylacetamide (AOA) and 2-amino-N-octadecyl-3-(4-hydroxyphenyl) propionamide (AOHP) as corrosion inhibitors for N80 steel in 15 per cent hydrochloric acid (HCl), which may find application as eco-friendly corrosion inhibitors in acidizing processes in the petroleum industry. Due to scale plugging in the well bore, there can be a decline in the crude production rate, and an acidization operation has to be carried out, normally by using 15 per cent HCl to remove the scale plugging. To reduce the aggressive attack of HCl on tubing and casing materials (N80 steel), inhibitors are added to the acid solution during the acidifying process.

Design/methodology/approach

Different concentrations of the synthesized inhibitors AOA and AOHP were added to the test solution (15 per cent HCl), and the corrosion inhibition efficiencies of these inhibitors for N80 steel were calculated from weight loss determinations, potentiodynamic polarization scans and alternating current (AC) impedance measurements. The influence of temperature (298-323 K) on the inhibition behavior was studied. Surface examinations were performed by means of Fourier transform infrared spectra and scanning electron microscope.

Findings

AOA and AOHP at 150-ppm concentration showed a maximum efficiency of 90.04 and 94.97 per cent, respectively, at 298 K in 15 per cent HCl solution. Both the inhibitors acted as mixed corrosion inhibitors. The adsorption of the corrosion inhibitors at the surface of the N80 steel was the underlying mechanism of corrosion inhibition.

Originality/value

This paper reports the preliminary laboratory results of inhibitors AOA and AOHP for the corrosion prevention of N80 steel casings and tubulars exposed to HCl and may be of practical help to petroleum engineers for carrying out acidization in oil wells after further investigation of the compound at higher temperature.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 2005

N.A.F. Al‐Rawashdeh and A.K. Maayta

To investigate the inhibiting effect of the cationic surfactant cetyl trimethylammonium chloride (CTAC) on aluminum (Al).

1168

Abstract

Purpose

To investigate the inhibiting effect of the cationic surfactant cetyl trimethylammonium chloride (CTAC) on aluminum (Al).

Design/methodology/approach

Pure aluminum rods were immersed in hydrochloric acid (HCl) and sodium hydroxide (NaOH) solutions for weight‐loss tests and potentiostatic polarization measurements.

Findings

The inhibition action depends on the concentration of the inhibitor, the concentration of the corrosive media, and the temperature. The inhibition efficiency in NaOH was higher than that in HCl solutions. In both acidic and basic media, the increase in temperature resulted in a decrease of the inhibition efficiency and a decrease in the degree of surface coverage. The results were indicative of increased aluminum dissolution with increasing temperature. It was found that adsorption of CTAC on the aluminum surface follows Temkin's isotherm in HCl and Langmuir's isotherm in NaOH.

Originality/value

Clarifies the effects of concentration and temperature on the inhibition efficiency of a cationic surfactant on aluminum.

Details

Anti-Corrosion Methods and Materials, vol. 52 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 1000