Search results

1 – 10 of 28
Article
Publication date: 16 October 2018

Qifeng Yang, Daokui Qu, Fang Xu, Fengshan Zou, Guojian He and Mingze Sun

This paper aims to propose a series of approaches to solve the problem of the mobile robot motion control and autonomous navigation in large-scale outdoor GPS-denied environments.

Abstract

Purpose

This paper aims to propose a series of approaches to solve the problem of the mobile robot motion control and autonomous navigation in large-scale outdoor GPS-denied environments.

Design/methodology/approach

Based on the model of mobile robot with two driving wheels, a controller is designed and tested in obstacle-cluttered scenes in this paper. By using the priori “topology-geometry” map constructed based on the odometer data and the online matching algorithm of 3D-laser scanning points, a novel approach of outdoor localization with 3D-laser scanner is proposed to solve the problem of poor localization accuracy in GPS-denied environments. A path planning strategy based on geometric feature analysis and priority evaluation algorithm is also adopted to ensure the safety and reliability of mobile robot’s autonomous navigation and control.

Findings

A series of experiments are conducted with a self-designed mobile robot platform in large-scale outdoor environments, and the experimental results show the validity and effectiveness of the proposed approach.

Originality/value

The problem of motion control for a differential drive mobile robot is investigated in this paper first. At the same time, a novel approach of outdoor localization with 3D-laser scanner is proposed to solve the problem of poor localization accuracy in GPS-denied environments. A path planning strategy based on geometric feature analysis and priority evaluation algorithm is also adopted to ensure the safety and reliability of mobile robot’s autonomous navigation and control.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 22 March 2021

Dongmin Li, Guofang Ma and Jia Li

It is essential to level the drilling platform across which a drilling robot travels in a slant underground coal mine tunnel to ensure smooth operation of the drill rod. However…

Abstract

Purpose

It is essential to level the drilling platform across which a drilling robot travels in a slant underground coal mine tunnel to ensure smooth operation of the drill rod. However, existing leveling methods do not provide dynamic performance under the drilling conditions of the underground coal mine. A four-point dynamic leveling algorithm is presented in this paper based on the platform attitude and support rod displacement (DLAAD). An experimental drilling robot demonstrates its dynamic leveling capability and ability to ensure smooth drill rod operations.

Design/methodology/approach

The attitude coordinate of the drilling robot is established according to its structure. A six-axis combined sensor is adopted to detect the platform attitude, thus revealing the three-axis Euler angles. The support rod displacement values are continuously detected by laser displacement sensors to obtain the displacement increment of each support rod as needed. The drilling robot is leveled according to the current support rod displacement and three-dimensional (3 D) attitude detected by the six-axis combined sensor dynamically.

Findings

Experimental results indicate that the DLAAD algorithm is correct and effectively levels the drilling platform dynamically. It can thus provide essential support in resolving drill rod sticking problems during actual underground coal mine drilling operations.

Practical implications

The DLAAD algorithm supports smooth drill rod operations in underground coal mines, which greatly enhances safety, reduces power consumption, and minimizes cost. The approach proposed here thus represents considerable benefits in terms of coal mine production and shows notable potential for application in similar fields.

Originality/value

The novel DLAAD algorithm and leveling control method are the key contributions of this work, they provide dynamical 3 D leveling and help to resolve drill rod sticking problems.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 2014

Annette Mossel, Michael Leichtfried, Christoph Kaltenriner and Hannes Kaufmann

The authors present a low-cost unmanned aerial vehicle (UAV) for autonomous flight and navigation in GPS-denied environments using an off-the-shelf smartphone as its core on-board…

Abstract

Purpose

The authors present a low-cost unmanned aerial vehicle (UAV) for autonomous flight and navigation in GPS-denied environments using an off-the-shelf smartphone as its core on-board processing unit. Thereby, the approach is independent from additional ground hardware and the UAV core unit can be easily replaced with more powerful hardware that simplifies setup updates as well as maintenance. The paper aims to discuss these issues.

Design/methodology/approach

The UAV is able to map, locate and navigate in an unknown indoor environment fusing vision-based tracking with inertial and attitude measurements. The authors choose an algorithmic approach for mapping and localization that does not require GPS coverage of the target area; therefore autonomous indoor navigation is made possible.

Findings

The authors demonstrate the UAVs capabilities of mapping, localization and navigation in an unknown 2D marker environment. The promising results enable future research on 3D self-localization and dense mapping using mobile hardware as the only on-board processing unit.

Research limitations/implications

The proposed autonomous flight processing pipeline robustly tracks and maps planar markers that need to be distributed throughout the tracking volume.

Practical implications

Due to the cost-effective platform and the flexibility of the software architecture, the approach can play an important role in areas with poor infrastructure (e.g. developing countries) to autonomously perform tasks for search and rescue, inspection and measurements.

Originality/value

The authors provide a low-cost off-the-shelf flight platform that only requires a commercially available mobile device as core processing unit for autonomous flight in GPS-denied areas.

Details

International Journal of Pervasive Computing and Communications, vol. 10 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 11 June 2021

Ruihao Lin, Junzhe Xu and Jianhua Zhang

Large-scale and precise three-dimensional (3D) map play an important role in autonomous driving and robot positioning. However, it is difficult to get accurate poses for mapping…

Abstract

Purpose

Large-scale and precise three-dimensional (3D) map play an important role in autonomous driving and robot positioning. However, it is difficult to get accurate poses for mapping. On one hand, the global positioning system (GPS) data are not always reliable owing to multipath effect and poor satellite visibility in many urban environments. In another hand, the LiDAR-based odometry has accumulative errors. This paper aims to propose a novel simultaneous localization and mapping (SLAM) system to obtain large-scale and precise 3D map.

Design/methodology/approach

The proposed SLAM system optimally integrates the GPS data and a LiDAR odometry. In this system, two core algorithms are developed. To effectively verify reliability of the GPS data, VGL (the abbreviation of Verify GPS data with LiDAR data) algorithm is proposed and the points from LiDAR are used by the algorithm. To obtain accurate poses in GPS-denied areas, this paper proposes EG-LOAM algorithm, a LiDAR odometry with local optimization strategy to eliminate the accumulative errors by means of reliable GPS data.

Findings

On the KITTI data set and the customized outdoor data set, the system is able to generate high-precision 3D map in both GPS-denied areas and areas covered by GPS. Meanwhile, the VGL algorithm is proved to be able to verify reliability of the GPS data with confidence and the EG-LOAM outperform the state-of-the-art baselines.

Originality/value

A novel SLAM system is proposed to obtain large-scale and precise 3D map. To improve the robustness of the system, the VGL algorithm and the EG-LOAM are designed. The whole system as well as the two algorithms have a satisfactory performance in experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 18 July 2024

Zhiyu Li, Hongguang Li, Yang Liu, Lingyun Jin and Congqing Wang

Autonomous flight of unmanned aerial vehicles (UAVs) in global position system (GPS)-denied environments has become an increasing research hotspot. This paper aims to realize the…

Abstract

Purpose

Autonomous flight of unmanned aerial vehicles (UAVs) in global position system (GPS)-denied environments has become an increasing research hotspot. This paper aims to realize the indoor fixed-point hovering control and autonomous flight for UAVs based on visual inertial simultaneous localization and mapping (SLAM) and sensor fusion algorithm based on extended Kalman filter.

Design/methodology/approach

The fundamental of the proposed method is using visual inertial SLAM to estimate the position information of the UAV and position-speed double-loop controller to control the UAV. The motion and observation models of the UAV and the fusion algorithm are given. Finally, experiments are performed to test the proposed algorithms.

Findings

A position-speed double-loop controller is proposed, by fusing the position information obtained by visual inertial SLAM with the data of airborne sensors. The experiment results of the indoor fixed-points hovering show that UAV flight control can be realized based on visual inertial SLAM in the absence of GPS.

Originality/value

A position-speed double-loop controller for UAV is designed and tested, which provides a more stable position estimation and enabled UAV to fly autonomously and hover in GPS-denied environment.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 15 June 2015

Boxin Zhao, Olaf Hellwich, Tianjiang Hu, Dianle Zhou, Yifeng Niu and Lincheng Shen

This study aims to investigate if smartphone sensors can be used in an unmanned aerial vehicle (UAV) localization system. With the development of technology, smartphones have been…

Abstract

Purpose

This study aims to investigate if smartphone sensors can be used in an unmanned aerial vehicle (UAV) localization system. With the development of technology, smartphones have been tentatively used in micro-UAVs due to their lightweight, inexpensiveness and flexibility. In this study, a Samsung Galaxy S3 smartphone is selected as an on-board sensor platform for UAV localization in Global Positioning System (GPS)-denied environments and two main issues are investigated: Are the phone sensors appropriate for UAV localization? If yes, what are the boundary conditions of employing them?

Design/methodology/approach

Efficient accuracy estimation methodologies for the phone sensors are proposed without using any expensive instruments. Using these methods, one can estimate his phone sensors accuracy at any time without special instruments. Then, a visual-inertial odometry scheme is introduced to evaluate the phone sensors-based path estimation performance.

Findings

Boundary conditions of using smartphone in a UAV navigation system are found. Both indoor and outdoor localization experiments are carried out and experimental results validate the effectiveness of the boundary conditions and the corresponding implemented scheme.

Originality/value

With the phone as a payload, UAVs can be further realized in smaller scale at lower cost, which will be used widely in the field of industrial robots.

Details

Industrial Robot: An International Journal, vol. 42 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 October 2019

Rokas Jurevičius and Virginijus Marcinkevičius

The purpose of this paper is to present a new data set of aerial imagery from robotics simulator (AIR). AIR data set aims to provide a starting point for localization system…

Abstract

Purpose

The purpose of this paper is to present a new data set of aerial imagery from robotics simulator (AIR). AIR data set aims to provide a starting point for localization system development and to become a typical benchmark for accuracy comparison of map-based localization algorithms, visual odometry and SLAM for high-altitude flights.

Design/methodology/approach

The presented data set contains over 100,000 aerial images captured from Gazebo robotics simulator using orthophoto maps as a ground plane. Flights with three different trajectories are performed on maps from urban and forest environment at different altitudes, totaling over 33 kilometers of flight distance.

Findings

The review of previous research studies show that the presented data set is the largest currently available public data set with downward facing camera imagery.

Originality/value

This paper presents the problem of missing publicly available data sets for high-altitude (100‒3,000 meters) UAV flights; the current state-of-the-art research studies performed to develop map-based localization system for UAVs depend on real-life test flights and custom-simulated data sets for accuracy evaluation of the algorithms. The presented new data set solves this problem and aims to help the researchers to improve and benchmark new algorithms for high-altitude flights.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 23 August 2011

Cailing Wang, Chunxia Zhao and Jingyu Yang

Positioning is a key task in most field robotics applications but can be very challenging in GPS‐denied or high‐slip environments. The purpose of this paper is to describe a…

Abstract

Purpose

Positioning is a key task in most field robotics applications but can be very challenging in GPS‐denied or high‐slip environments. The purpose of this paper is to describe a visual odometry strategy using only one camera in country roads.

Design/methodology/approach

This monocular odometery system uses as input only those images provided by a single camera mounted on the roof of the vehicle and the framework is composed of three main parts: image motion estimation, ego‐motion computation and visual odometry. The image motion is estimated based on a hyper‐complex wavelet phase‐derived optical flow field. The ego‐motion of the vehicle is computed by a blocked RANdom SAmple Consensus algorithm and a maximum likelihood estimator based on a 4‐degrees of freedom motion model. These as instantaneous ego‐motion measurements are used to update the vehicle trajectory according to a dead‐reckoning model and unscented Kalman filter.

Findings

The authors' proposed framework and algorithms are validated on videos from a real automotive platform. Furthermore, the recovered trajectory is superimposed onto a digital map, and the localization results from this method are compared to the ground truth measured with a GPS/INS joint system. These experimental results indicate that the framework and the algorithms are effective.

Originality/value

The effective framework and algorithms for visual odometry using only one camera in country roads are introduced in this paper.

Details

Industrial Robot: An International Journal, vol. 38 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 April 2019

Kashish Gupta, Bara Jamal Emran and Homayoun Najjaran

The purpose of this paper is to facilitate autonomous landing of a multi-rotor unmanned aerial vehicle (UAV) on a moving/tilting platform using a robust vision-based approach.

Abstract

Purpose

The purpose of this paper is to facilitate autonomous landing of a multi-rotor unmanned aerial vehicle (UAV) on a moving/tilting platform using a robust vision-based approach.

Design/methodology/approach

Autonomous landing of a multi-rotor UAV on a moving or tilting platform of unknown orientation in a GPS-denied and vision-compromised environment presents a challenge to common autopilot systems. The paper proposes a robust visual data processing system based on targets’ Oriented FAST and Rotated BRIEF features to estimate the UAV’s three-dimensional pose in real time.

Findings

The system is able to visually locate and identify the unique landing platform based on a cooperative marker with an error rate of 1° or less for all roll, pitch and yaw angles.

Practical implications

The proposed vision-based system aims at on-board use and increased reliability without a significant change to the computational load of the UAV.

Originality/value

The simplicity of the training procedure gives the process the flexibility needed to use a marker of any unknown/irregular shape or dimension. The process can be easily tweaked to respond to different cooperative markers. The on-board computationally inexpensive process can be added to off-the-shelf autopilots.

Details

International Journal of Intelligent Unmanned Systems, vol. 7 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 28