Search results

1 – 10 of 798
Article
Publication date: 31 July 2020

Oznur Usanmaz, Murat Karaderili, Ozlem Sahin and Tamer Savaş

Unmanned aerial vehicles (UAVs) are more affected by adverse wind conditions in especially landing. Therefore, they need to change the runway in use. In case of this…

Abstract

Purpose

Unmanned aerial vehicles (UAVs) are more affected by adverse wind conditions in especially landing. Therefore, they need to change the runway in use. In case of this change, to eliminate the uncertain maneuvers, there is a need for a special prescribed track. The purpose of this study is the construction of a prescribed track at a single runway to provide a facility to change the runway in use.

Design/methodology/approach

Two forms of prescribed tracks, as standard and alternate, were constructed for UAVs by taking into consideration the key parameters to design flight procedures. Both tracks were assessed in a real-time simulation method. Moreover, unmanned vehicle simulation was used for a validation process.

Findings

According to the real-time simulation results, 8.14 NM and 6.64 NM of flight distance and 5.43 min and 4.43 min of flight time for the standard and alternate prescribed tracks were found, respectively. The obtained results were in favor of the alternate prescribed track. Furthermore, the prescribed track was assessed and validated in both air traffic control and UAV simulations. The feedback of pilots and controllers was very positive for a prescribed track, as it provided them with foresight and time to take care in any situations.

Practical implications

The prescribed track in this paper may be applied by airspace designers and UAV users to perform safe and efficient landing in adverse wind conditions.

Originality/value

In this study, a prescribed track was constructed for UAVs. Quantitative results were achieved using a real-time simulation method in terms of flight distance and flight time. Additionally, validation of the prescribed track was achieved by unmanned air vehicle simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 March 2022

Lidija Tomić, Olja Čokorilo, Ljubiša Vasov and Branimir Stojiljković

The paper aims to investigate the compatibility of manned-aircraft airborne collision avoidance systems (ACAS) for use on unmanned aerial vehicles (UAV).

Abstract

Purpose

The paper aims to investigate the compatibility of manned-aircraft airborne collision avoidance systems (ACAS) for use on unmanned aerial vehicles (UAV).

Design/methodology/approach

The paper uses the Fault Tree method for defining ACAS model adapted for the UAV operations, with the aim of showing the presence of certain factors that configure in such ACAS system, and whose failure can lead to an adverse event – mid-air collision.

Findings

Based on the effectiveness analysis of ACAS solution adapted for the UAV operations, for given inputs, it can be concluded that the probability of ACAS failure is on the order of 10–4, as well as that in the case of autonomous ACAS solution for the UAV, the probability is reduced to 10–5. The most influential factors for the failure of the UAV’s ACAS are as follows: technical implications on the UAV, human factor, sensor error, communication and C2 link issue.

Practical implications

The established model could be used both in the UAV’s ACAS design and application phases, with the aim of assessing the effectiveness of the adopted solution. The model outputs not only highlight the critical points of the system but also provide the basis for defining the Target Level of Safety (TLOS) for the UAV operations.

Originality/value

The developed model can be expected to speed up the design and adoption process of ACAS solutions for the UAVs. Also, the paper presents one of the first attempts to quantify TLOS for the UAV operations in the context of collision avoidance systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 May 2022

J. Vijitha Ananthi and P. Subha Hency Jose

To avoid this situation, the authors proposed an optimal artificial bee colony algorithm-based Unmanned Aerial Vehicle (UAV) routing algorithm for efficient data…

Abstract

Purpose

To avoid this situation, the authors proposed an optimal artificial bee colony algorithm-based Unmanned Aerial Vehicle (UAV) routing algorithm for efficient data communication between doctors and patients. This proposed method worked in three stages.

Design/methodology/approach

In recent decades, wireless body area networks have played an important role in health care applications. It facilitates the transmission of the patients' health data analysis report to the appropriate doctors.

Findings

In the first phase, biological sensors are connected to the human body via a controller node and collected data is transmitted via Bluetooth to the Personal Device Assistant (PDA). In the second phase, collected data will be transmitted via the Internet of things using an artificial bee colony algorithm. The second aids in determining the best route. In the third phase, unmanned aerial vehicles will use the best path to send collected data to doctors, caregivers, ambulances and cloud storage servers.

Originality/value

The simulation results show that the network's performance is superior when compared to existing approaches. The proposed algorithm achieves a high throughput, a lower delay, a higher link rate and a higher delivery rate.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 8 August 2022

Lionel Dongmo Fouellefack, Lelanie Smith and Michael Kruger

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not…

Abstract

Purpose

A hybrid-electric unmanned aerial vehicle (HE-UAV) model has been developed to address the problem of low endurance of a small electric UAV. Electric-powered UAVs are not capable of achieving a high range and endurance due to the low energy density of its batteries. Alternatively, conventional UAVs (cUAVs) using fuel with an internal combustion engine (ICE) produces more noise and thermal signatures which is undesirable, especially if the air vehicle is required to patrol at low altitudes and remain undetected by ground patrols. This paper aims to investigate the impact of implementing hybrid propulsion technology to improve on the endurance of the UAV (based on a 13.6 kg UAV).

Design/methodology/approach

A HE-UAV model is developed to analyze the fuel consumption of the UAV for given mission profiles which were then compared to a cUAV. Although, this UAV size was used as reference case study, it can potentially be used to analyze the fuel consumption of any fixed wing UAV of similar take-off weight. The model was developed in a Matlab-Simulink environment using Simulink built-in functionalities, including all the subsystem of the hybrid powertrain. That is, the ICE, electric motor, battery, DC-DC converter, fuel system and propeller system as well as the aerodynamic system of the UAV. In addition, a ruled-based supervisory controlled strategy was implemented to characterize the split between the two propulsive components (ICE and electric motor) during the UAV mission. Finally, an electrification scheme was implemented to account for the hybridization of the UAV during certain stages of flight. The electrification scheme was then varied by changing the time duration of the UAV during certain stages of flight.

Findings

Based on simulation, it was observed a HE-UAV could achieve a fuel saving of 33% compared to the cUAV. A validation study showed a predicted improved fuel consumption of 9.5% for the Aerosonde UAV.

Originality/value

The novelty of this work comes with the implementation of a rule-based supervisory controller to characterize the split between the two propulsive components during the UAV mission. Also, the model was created by considering steady flight during cruise, but not during the climb and descend segment of the mission.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 April 2021

Anjan Chamuah and Rajbeer Singh

The purpose of the paper is to describe the evolving regulatory structures of the civilian unmanned aerial vehicle (UAV) in India and Japan, not yet fully developed to…

Abstract

Purpose

The purpose of the paper is to describe the evolving regulatory structures of the civilian unmanned aerial vehicle (UAV) in India and Japan, not yet fully developed to regulate the deployment of the UAV. India and Japan are at the forefront to overhaul the respective regulatory framework to address issues of accountability, responsibility and risks associated with the deployment of UAV technologies.

Design/methodology/approach

In-depth interviews are conducted both in Japan and India to gather primary data based on the snowball sampling method. The paper addresses questions such as what is the current scenario of civilian UAV deployment in India and Japan. What are the regulation structures for Civil UAV deployment and operation and how they differ in India and Japan? What are the key regulatory challenges for Civil UAV deployment in India? How regulation structure enables or inhibits the users and operators of Civil UAVs in India? What are mutual learnings concerning UAV regulations?

Findings

Findings reveal that the Indian regulations address issues of responsibility by imparting values of privacy, safety, autonomy and security; Japanese regulation prefers values of trust, responsibility, safety and ownership with more freedom to experiment.

Originality/value

The study on civilian UAV regulatory framework is a new and innovative work embedded by the dimensions of responsibility and accountability from a responsible innovation perspective. The work is a new contribution to innovation literature looked at from regulatory structures. Field visits to both Japan and India enrich the study to a new elevation.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 June 2021

Richard Hann and Tor Arne Johansen

The main purpose of this paper is to investigate the effects of icing on unmanned aerial vehicles (UAVs) at low Reynolds numbers and to highlight the differences to icing…

Abstract

Purpose

The main purpose of this paper is to investigate the effects of icing on unmanned aerial vehicles (UAVs) at low Reynolds numbers and to highlight the differences to icing on manned aircraft at high Reynolds numbers. This paper follows existing research on low Reynolds number effects on ice accretion. This study extends the focus to how variations of airspeed and chord length affect the ice accretions, and aerodynamic performance degradation is investigated.

Design/methodology/approach

A parametric study with independent variations of airspeed and chord lengths was conducted on a typical UAV airfoil (RG-15) using icing computational fluid dynamic methods. FENSAP-ICE was used to simulate ice shapes and aerodynamic performance penalties. Validation was performed with two experimental ice shapes obtained from a low-speed icing wind tunnel. Three meteorological conditions were chosen to represent the icing typologies of rime, glaze and mixed ice. A parameter study with different chord lengths and airspeeds was then conducted for rime, glaze and mixed icing conditions.

Findings

The simulation results showed that the effect of airspeed variation depended on the ice accretion regime. For rime, it led to a minor increase in ice accretion. For mixed and glaze, the impact on ice geometry and penalties was substantially larger. The variation of chord length had a substantial impact on relative ice thicknesses, ice area, ice limits and performance degradation, independent from the icing regime.

Research limitations/implications

The implications of this manuscript are relevant for highlighting the differences between icing on manned and unmanned aircraft. Unmanned aircraft are typically smaller and fly slower than manned aircraft. Although previous research has documented the influence of this on the ice accretions, this paper investigates the effect on aerodynamic performance degradation. The findings in this work show that UAVs are more sensitive to icing conditions compared to larger and faster manned aircraft. By consequence, icing conditions are more severe for UAVs.

Practical implications

Atmospheric in-flight icing is a severe risk for fixed-wing UAVs and significantly limits their operational envelope. As UAVs are typically smaller and operate at lower airspeeds compared to manned aircraft, it is important to understand how the differences in airspeed and size affect ice accretion and aerodynamic performance penalties.

Originality/value

Earlier work has described the effect of Reynolds number variations on the ice accretion characteristics for UAVs. This work is expanding on those findings by investigating the effect of airspeed and chord length on ice accretion shapes separately. In addition, this study also investigates how these parameters affect aerodynamic performance penalties (lift, drag and stall).

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 January 2019

Anna Maria Mazur and Roman Domanski

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The…

Abstract

Purpose

The presented research is carried out in reaction to the soaring costs of fuel and tight control over environmental issues such as carbon dioxide emissions and noise. The purpose of this paper is to study the feasibility of applying the environmental-friendly energy source in an unmanned aerial vehicles (UAVs) propulsion system.

Design/methodology/approach

Currently, the majority of UAVs are still powered by conventional combustion engines. An electric propulsion system is most commonly found in civilian micro and mini UAVs. The UAV classification is reviewed in this study. This paper focuses mainly on application of electric propulsion systems in UAVs. Investigated hybrid energy systems consist of fuel cells, Li-ion batteries, super-capacitors and photovoltaic (PV) modules. Current applications of fuel cell systems in UAVs are also presented.

Findings

The conducted research shows that hybridization allows for better energy management and operation of every energy source onboard the UAV within its limits. The hybrid energy system design should be created to maximize system efficiency without compromising the performance of the aircraft.

Practical implications

The presented study highlights the reduction of the energy consumption, necessary to perform the mission and maximizing of the endurance with simultaneous decrease in emissions and noise level.

Originality/value

The conducted research studies the feasibility of implementing the environmental-friendly hybrid electric propulsion systems in UAVs that offers high efficiency, reliability, controllability, lack of thermal and noise signature, thus, providing quiet and clean drive with low vibration levels. This paper highlights the main challenges and current research on fuel cell in aviation and draws attention to fuel cell – electric system modeling, hybridization and energy management.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 October 2016

Turgul Oktay, Mehmet Konar, Murat Onay, Murat Aydin and Mohamed Abdallah Mohamed

The purpose of this paper is to increase flight performance of small unmanned aerial vehicle (UAV) using simultaneous UAV and autopilot system design.

Abstract

Purpose

The purpose of this paper is to increase flight performance of small unmanned aerial vehicle (UAV) using simultaneous UAV and autopilot system design.

Design/methodology/approach

A small UAV is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory. Its wing and tail is able to move forward and backward in the nose-to-tail direction in prescribed interval. Autopilot parameters and assembly position of wing and tail to fuselage are simultaneously designed to maximize flight performance using a stochastic optimization method. Results are obtained are used for simulations.

Findings

Using simultaneous UAV and autopilot system design idea, flight performance is maximized.

Research limitations/implications

Permission of Directorate General of Civil Aviation in Turkey is required for testing UAVs in long range.

Practical implications

Simultaneous design idea is very beneficial for improving UAV flight performance.

Originality/value

Creating a novel method to improve flight performance of UAV and developing an algorithm performing simultaneous design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 January 2019

Tao Han, Bo Xiao, Xi-Sheng Zhan, Jie Wu and Hongling Gao

The purpose of this paper is to investigate time-optimal control problems for multiple unmanned aerial vehicle (UAV) systems to achieve predefined flying shape.

Abstract

Purpose

The purpose of this paper is to investigate time-optimal control problems for multiple unmanned aerial vehicle (UAV) systems to achieve predefined flying shape.

Design/methodology/approach

Two time-optimal protocols are proposed for the situations with or without human control input, respectively. Then, Pontryagin’s minimum principle approach is applied to deal with the time-optimal control problems for UAV systems, where the cost function, the initial and terminal conditions are given in advance. Moreover, necessary conditions are derived to ensure that the given performance index is optimal.

Findings

The effectiveness of the obtained time-optimal control protocols is verified by two contrastive numerical simulation examples. Consequently, the proposed protocols can successfully achieve the prescribed flying shape.

Originality/value

This paper proposes a solution to solve the time-optimal control problems for multiple UAV systems to achieve predefined flying shape.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 798