Search results

1 – 2 of 2
Article
Publication date: 23 August 2011

Cailing Wang, Chunxia Zhao and Jingyu Yang

Positioning is a key task in most field robotics applications but can be very challenging in GPS‐denied or high‐slip environments. The purpose of this paper is to describe a…

Abstract

Purpose

Positioning is a key task in most field robotics applications but can be very challenging in GPS‐denied or high‐slip environments. The purpose of this paper is to describe a visual odometry strategy using only one camera in country roads.

Design/methodology/approach

This monocular odometery system uses as input only those images provided by a single camera mounted on the roof of the vehicle and the framework is composed of three main parts: image motion estimation, ego‐motion computation and visual odometry. The image motion is estimated based on a hyper‐complex wavelet phase‐derived optical flow field. The ego‐motion of the vehicle is computed by a blocked RANdom SAmple Consensus algorithm and a maximum likelihood estimator based on a 4‐degrees of freedom motion model. These as instantaneous ego‐motion measurements are used to update the vehicle trajectory according to a dead‐reckoning model and unscented Kalman filter.

Findings

The authors' proposed framework and algorithms are validated on videos from a real automotive platform. Furthermore, the recovered trajectory is superimposed onto a digital map, and the localization results from this method are compared to the ground truth measured with a GPS/INS joint system. These experimental results indicate that the framework and the algorithms are effective.

Originality/value

The effective framework and algorithms for visual odometry using only one camera in country roads are introduced in this paper.

Details

Industrial Robot: An International Journal, vol. 38 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 January 2022

Adelaide Nespoli, Nicola Bennato, Elena Villa and Francesca Passaretti

This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting.

Abstract

Purpose

This paper aims to investigate the microstructural anisotropy of Ti-6Al-4V samples fabricated by selective laser melting.

Design/methodology/approach

Specimens are fabricated through a Renishaw AM400 selective laser melting machine. Three microstructures (as-built, 850°C annealed and 1,050°C annealed) and two building orientations, parallel (PA) and perpendicular (PE) to the building platform, are considered. Starting from in-depth microscopic observations and comprehensive electron backscattered diffraction imaging, the study addresses non-conventional techniques such as internal friction and electrical resistivity measurements to assess the anisotropy of the fabricated parts.

Findings

Microscope observations highlight a fine texture with columnar grains parallel to the building direction in the as-built and 850°C annealed samples. Besides, coarse grains characterized the 1,050°C annealed specimens. Internal friction measurements pointed out the presence of internal stress while storage modulus analyses appear sensitive to texture. Electrical resistivity is resulted to be dependent on grain orientation.

Originality/value

The work uses some novel characterization techniques to study the anisotropy and internal stresses of Ti-6Al-4V samples processed by selective laser melting. Mechanical spectroscopy results suitable in this kind of study, as it mimics the operating conditions of the material.

Details

Rapid Prototyping Journal, vol. 28 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2