Search results

1 – 10 of 981
Article
Publication date: 1 March 2007

Tomohiro Yokozeki

Gas permeability through damage networks in composite laminates is the key issue for the applicability of high‐performance composites to the cryogenic propellant tanks of space…

Abstract

Gas permeability through damage networks in composite laminates is the key issue for the applicability of high‐performance composites to the cryogenic propellant tanks of space launch vehicles. A simple model for the gas permeability induced by multilayer matrix cracks in composite laminates is proposed based on the leak conductance at crack intersections, which is an extension of the model by Kumazawa et al (AIAA J. 41, 2037‐ ‐2044, 2003). Experimental evidence on the gas permeability mechanisms is summarized and reflected in the present model. In order to include the effects of applied loadings and damage sizes on the gas permeability, the leak conductance is assumed to be a function of the average crack opening displacements of the matrix cracks and the crack intersection angles. The leak conductance factor was empirically obtained as a function of the crack intersection angle, and the comparison of the gas permeability between the predictions based on the developed model and the experimental results is presented for the validity of this model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 January 2024

Xianguang Sun

The purpose of this study is to establish a thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory.

Abstract

Purpose

The purpose of this study is to establish a thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory.

Design/methodology/approach

The effects of contact load, inclination angle, fractal dimensional and fractal roughness on thermal contact conductance of rough surfaces were studied using numerical simulation.

Findings

The results show that the thermal contact conductance of the rough surface increases with the increase of contact load and fractal dimension and decreases with the increase of fractal roughness and inclination angle. The inclination angle of the rough surface has an important influence on the thermal contact conductance of the rough, and it is a factor that cannot be ignored in the study of the thermal contact conductance of rough surfaces.

Originality/value

A thermal contact conductance model of rough surfaces with inclination based on three-dimensional fractal theory was established in this study. The achievements of this study provide some theoretical basis for the investigation of the thermal contact conductance of rough surfaces.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 December 2023

Xianguang Sun and Xicheng Xin

The purpose of this study is to propose a fractal model of thermal contact conductance of rough surfaces based on axisymmetric cosinusoidal asperity.

Abstract

Purpose

The purpose of this study is to propose a fractal model of thermal contact conductance of rough surfaces based on axisymmetric cosinusoidal asperity.

Design/methodology/approach

The effects of contact load, fractal dimension, fractal roughness and friction coefficient on the thermal contact conductance of rough surfaces were investigated in this study.

Findings

The findings suggest that as the contact load increases, the thermal contact conductance of rough surfaces also increases. In addition, an increase in the fractal dimension corresponds to an increase in the thermal contact conductance. Conversely, an increase in fractal roughness leads to a decrease in thermal contact conductance. The smaller the friction coefficient, the lower the thermal contact conductance of the rough surface. In practical engineering applications, it is possible to achieve the desired thermal contact conductance of rough surfaces by selecting surfaces with appropriate roughness.

Originality/value

A fractal model of thermal contact conductance of rough surfaces based on axisymmetric cosinusoidal asperity was established in this study. The findings of this study offer a theoretical foundation for investigating the thermal contact conductance of rough surfaces.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 April 2023

Xianguang Sun and Wuce Xing

The purpose of this study is to present a fractal model of thermal contact conductance of rough surfaces based on elliptical asperity.

Abstract

Purpose

The purpose of this study is to present a fractal model of thermal contact conductance of rough surfaces based on elliptical asperity.

Design/methodology/approach

The effects of contact load, fractal dimensional, fractal roughness and eccentricity on thermal contact conductance of rough surfaces were investigated by using numerical simulation.

Findings

The results indicate that the thermal contact conductance of rough surfaces increases with the increase of the contact load, increases with the increase of the fractal dimension and decreases with the increase of the fractal roughness. The thermal contact conductance of rough surfaces increases with the increase of eccentricity. The shape of the asperity of rough surfaces has an important influence on the thermal contact conductance of rough surfaces.

Originality/value

A fractal model of thermal contact conductance of rough surfaces based on elliptical asperity was established in this study. The achievements of this study provide some theoretical basis for the investigation of thermal contact conductance of bolted joint surfaces.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 September 2013

Osama M. Abuzeida and Nasim Alnumanb

– This work aims at constructing a continuous mathematical, linear elastic, model for the thermal contact conductance (TCC) of two rough surfaces in contact.

Abstract

Purpose

This work aims at constructing a continuous mathematical, linear elastic, model for the thermal contact conductance (TCC) of two rough surfaces in contact.

Design/methodology/approach

The rough surfaces, known to be physical fractal, are modelled using a deterministic Cantor structure. Such structure shows several levels of imperfections and including, therefore, several scales in the constriction of the flux lines. The proposed model will study the effect of the deformation (approach) of the two rough surfaces on the TCC as a function of the remotely applied load.

Findings

An asymptotic power law, derived using approximate iterative relations, is used to express the area of contact and, consequently, the thermal conductance as a function of the applied load. The model is valid only when the approach of the two surface in contact is of the order of the surface roughness. The results obtained using this model, which admits closed form solution, are displayed graphically for selected values of the system parameters; the fractal surface roughness and various material properties. The obtained results showed good agreement with published experimental results both in trend and the numerical values.

Originality/value

The model obtained provides further insight into the effect that surface texture has on the heat conductance process. The proposed model could be used to conduct an analytical investigation of the thermal conductance of rough surfaces in contact. This model, although simple (composed of springs), nevertheless works well.

Article
Publication date: 14 August 2007

Andrzej Szromba

Shunt active power filters are used to decrease or almost eliminate non‐active currents flowing through the supply source. Numerous control methods of active filters have been…

Abstract

Purpose

Shunt active power filters are used to decrease or almost eliminate non‐active currents flowing through the supply source. Numerous control methods of active filters have been proposed in many papers. The aim of this paper is to demonstrate a simple but very effective method of obtaining the compensated load active current.

Design/methodology/approach

The method allows one to control the shunt active power filter only by monitoring energy stored in the filter. Based on the introduced generic structure of the filter the changes of filter energy are examined in order to obtain the reference current for the filter compensation action.

Findings

This presented method can be implemented to nearly all structures of active filters. It is suitable not only for the single‐phase but also for the three‐phase circuit. Such energy‐controlled filters may be built on the basis of voltage‐ and current‐source inverters as well.

Originality/value

This paper provides an alternative approach to address the problem of the shunt active filter control method. The paper shows that monitoring the filter's energy suffices for proper control of the filter compensation action.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 January 2022

Hongwei Li, Xiao Wang, Junmu Lin, Lei Wu and Tong Liu

This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and…

Abstract

Purpose

This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and economic alternative to millions of residential loads. The power flow (PF) in the DC network has some similarities with the alternative current case, but there are important differences that deserve to be further concerned. Moreover, the dispatchable distributed generators (DGs) in DC network can realize the flexible voltage control based on droop-control or virtual impedance-based methods. Thus, DC PF problems are still required to further study, such as hosting all load types and different DGs.

Design/methodology/approach

The DC power analysis was explored in this paper, and an improved Newton–Raphson based linear PF method has been proposed. Considering that constant impedance (CR), constant current (CI) and constant power (CP) (ZIP) loads can get close to the practical load level, ZIP load has been merged into the linear PF method. Moreover, DGs are much common and can be easily connected to the DC grid, so V nodes and the dispatchable DG units with droop control have been further taken into account in the proposed method.

Findings

The performance and advantages of the proposed method are investigated based on the results of the various test systems. The two existing linear models were used to compare with the proposed linear method. The numerical results demonstrate enough accuracy, strong robustness and high computational efficiency of the proposed linear method even in the heavily-loaded conditions and with 10 times the line resistances.

Originality/value

The conductance corresponding to each constant resistance load and the equivalent conductance for the dispatchable unit can be directly merged into the self-conductance (diagonal component) of the conductance matrix. The constant current loads and the injection powers from dispatchable DG units can be treated as the current sources in the proposed method. All of those make the PF model much clear and simple. It is capable of offering enough accuracy level, and it is suitable for applications in DC networks that require a large number of repeated PF calculations to optimize the energy flows under different scenarios.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Andrzej Szromba

The purpose of this study is to find a control method for three-phase four-wire shunt active power filters, which uses a load-equivalent conductance for obtaining a reference…

Abstract

Purpose

The purpose of this study is to find a control method for three-phase four-wire shunt active power filters, which uses a load-equivalent conductance for obtaining a reference signal for compensating non-active current.

Design/methodology/approach

Changes of energy stored in an active filter’s reactance elements are monitored to find the active component of the load current. It is then used as a current reference to be realised as a supply source current. Computer simulation methods were used to verify the presented control method.

Findings

To calculate the reference signal for the active filter action, it is enough to measure the active filter’s DC-side capacitors’ voltages. It has been proved that P regulators are sufficient to realise compensating current and to stabilise active filter capacitors’ voltages. The supply source-neutral conductor current can be zeroed even for nonlinear and unbalanced load-generating DC-component in its neutral conductor. In addition, the active filter can buffer load-active power changes and act simultaneously as a local energy accumulator.

Originality/value

This paper provides an alternative approach to address the problem of the three-phase four-wire shunt active power filter control methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 1996

V. Kripesh, S.K. Bhatnagar, H. Osterwinter and W. Gust

Temperature humidity acceleration factors for surface conductance areobtained to relate the reliability of film conductors formed by different processes. Analytical expressionsfor…

197

Abstract

Temperature humidity acceleration factors for surface conductance are obtained to relate the reliability of film conductors formed by different processes. Analytical expressions for acceleration factor are evolved for both screen‐printed and laser micromachined conductor samples. The rapid solidification of metal conductors due to laser micromachining and its effect on surface conductance are also studied. An analytical expression for the most common accelerated test condition (85°C, 85% relative humidity) is also derived for both screen‐printed and laser micromachined samples.

Details

Microelectronics International, vol. 13 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 October 1958

Eric Ford

One of the problems increasingly exercising the minds of corrosion engineers is the question of devising anti‐corrosion techniques to counteract the degree and type of corrosion…

Abstract

One of the problems increasingly exercising the minds of corrosion engineers is the question of devising anti‐corrosion techniques to counteract the degree and type of corrosion affecting the various materials requiring protection. Of several methods of determining the amount and rate of the corrosion of a given metal one of the most useful is based on measurement of the corroding specimen's change in electrical conductance.

Details

Anti-Corrosion Methods and Materials, vol. 5 no. 10
Type: Research Article
ISSN: 0003-5599

1 – 10 of 981