Search results

1 – 10 of 45
Article
Publication date: 11 September 2024

Dongyang Cao, Daniel Bouzolin, Christopher Paniagua, Hongbing Lu and D.Todd Griffith

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced…

Abstract

Purpose

Herein, the authors report the effects of printing parameters, joining method, and annealing conditions on the structural performance of fusion-joined short-beam sections produced by additive manufacturing.

Design/methodology/approach

The authors first identified appropriate printing parameters for joining segmented short beams and then used those parameters to print and fusion-join segments with different configurations of stiffeners to form a longer section of a wing or small wind turbine blade structure.

Findings

It was found that the beams with three lateral and three base stiffening ribs give the highest flexural strength among the three beams investigated. Results on joined beams annealed at different conditions showed that annealing at 70 °C for 0.5 h yields higher performance than annealing at the same temperature for longer times. It is also found that in the case of the hot-plate-welded three-dimensional (3D)-printed structures, no annealing is needed for reaching a high strength-to-weight ratio, but annealing is helpful for maximizing the modulus-to-weight ratio. Both thermal buckling and edge wrapping were observed under annealing at 70°C for 0.5 h for 3D-printed beams comprising two lateral and four base stiffening plates.

Originality/value

Fusion-joining of additively manufactured segments is needed owing to the constraint in building volume of a typical commercial 3D-printer. However, study of the effect of process parameters is needed to quantify their effect on mechanical performance. This investigation has therefore identified key printing parameters and annealing conditions for fusion-joining short segments to form larger structures, from multiple 3D-printed sections, such as wind blade structures.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 11 September 2024

Lindsey Bezek and Kwan-Soo Lee

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing…

Abstract

Purpose

Although ceramic additive manufacturing (AM) could be used to fabricate complex, high-resolution parts for diverse, functional applications, one ongoing challenge is optimizing the post-process, particularly sintering, conditions to consistently produce geometrically accurate and mechanically robust parts. This study aims to investigate how sintering temperature affects feature resolution and flexural properties of silica-based parts formed by vat photopolymerization (VPP) AM.

Design/methodology/approach

Test artifacts were designed to evaluate features of different sizes, shapes and orientations, and three-point bend specimens printed in multiple orientations were used to evaluate mechanical properties. Sintering temperatures were varied between 1000°C and 1300°C.

Findings

Deviations from designed dimensions often increased with higher sintering temperatures and/or larger features. Higher sintering temperatures yielded parts with higher strength and lower strain at break. Many features exhibited defects, often dependent on geometry and sintering temperature, highlighting the need for further analysis of debinding and sintering parameters.

Originality/value

To the best of the authors’ knowledge, this is the first time test artifacts have been designed for ceramic VPP. This work also offers insights into the effect of sintering temperature and print orientation on flexural properties. These results provide design guidelines for a particular material, while the methodology outlined for assessing feature resolution and flexural strength is broadly applicable to other ceramics, enabling more predictable part performance when considering the future design and manufacture of complex ceramic parts.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 July 2024

Aneel Manan, Pu Zhang, Shoaib Ahmad and Jawad Ahmad

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete…

Abstract

Purpose

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete structure. However, FRP bars are not practically used due to a lack of standard codes. Various codes, including ACI-440-17 and CSA S806-12, have been established to provide guidelines for the incorporation of FRP bars in concrete as reinforcement. The application of these codes may result in over-reinforcement. Therefore, this research presents the use of a machine learning approach to predict the accurate flexural strength of the FRP beams with the use of 408 experimental results.

Design/methodology/approach

In this research, the input parameters are the width of the beam, effective depth of the beam, concrete compressive strength, FRP bar elastic modulus and FRP bar tensile strength. Three machine learning algorithms, namely, gene expression programming, multi-expression programming and artificial neural networks, are developed. The accuracy of the developed models was judged by R2, root means squared and mean absolute error. Finally, the study conducts prismatic analysis by considering different parameters. including depth and percentage of bottom reinforcement.

Findings

The artificial neural networks model result is the most accurate prediction (99%), with the lowest root mean squared error (2.66) and lowest mean absolute error (1.38). In addition, the result of SHapley Additive exPlanation analysis depicts that the effective depth and percentage of bottom reinforcement are the most influential parameters of FRP bars reinforced concrete beam. Therefore, the findings recommend that special attention should be given to the effective depth and percentage of bottom reinforcement.

Originality/value

Previous studies revealed that the flexural strength of concrete beams reinforced with FRP bars is significantly influenced by factors such as beam width, effective depth, concrete compressive strength, FRP bars’ elastic modulus and FRP bar tensile strength. Therefore, a substantial database comprising 408 experimental results considered for these parameters was compiled, and a simple and reliable model was proposed. The model developed in this research was compared with traditional codes, and it can be noted that the model developed in this study is much more accurate than the traditional codes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 December 2023

Bheem Pratap and Pramod Kumar

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Abstract

Purpose

To investigate the mechanical properties of geopolymer concrete at elevated temperatures.

Design/methodology/approach

The investigation involved studying the influence of partially replacing fly ash with ground granulated blast furnace slag (GGBS) at different proportions (5%, 10%, 15%, 20% and 25%) on the composition of the geopolymer. This approach aimed to examine how the addition of GGBS impacts the properties of the geopolymer material. The chemical NaOH was purchased from the local supplier of Jamshedpur. The alkali solution was prepared with a concentration of 12 M NaOH to produce the concrete. After several trials, the alkaline-to-binder ratio was determined to be 0.43.

Findings

The compressive strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 35.42 MPa, 41.26 MPa, 44.79 MPa, 50.51 MPa and 46.33 MPa, respectively. The flexural strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 5.31 MPa, 5.64 MPa, 6.12 MPa, 7.15 MPa and 6.48 MPa, respectively. The split tensile strength values at 28 days for specimens FG1, FG2, FG3, FG4 and FG5 are 2.82 MPa, 2.95 MPa, 3.14 MPa, 3.52 MPa and 3.31 MPa, respectively.

Originality/value

This approach allows for the examination of how the addition of GGBS affects the properties of the geopolymer material. Four different temperature levels were chosen for analysis: 100 °C, 300 °C, 500 °C and 700 °C. By subjecting the geopolymer samples to these elevated temperatures, the study aimed to observe any changes in their mechanical.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 18 July 2024

Vishal Mishra, Jitendra Kumar, Sushant Negi and Simanchal Kar

The current study aims to develop a 3D-printed continuous metal fiber-reinforced recycled thermoplastic composite using an in-nozzle impregnation technique.

Abstract

Purpose

The current study aims to develop a 3D-printed continuous metal fiber-reinforced recycled thermoplastic composite using an in-nozzle impregnation technique.

Design/methodology/approach

Recycled acrylonitrile butadiene styrene (RABS) plastic was blended with virgin ABS (VABS) plastic in a ratio of 60:40 weight proportion to develop a 3D printing filament that was used as a matrix material, while post-used continuous brass wire (CBW) was used as a reinforcement. 3D printing was done by using a self-customized print head to fabricate the flexural, compression and interlaminar shear stress (ILSS) test samples to evaluate the bending, compressive and ILSS properties of the build samples and compared with VABS and RABS-B samples. Moreover, the physical properties of the samples were also analyzed.

Findings

Upon three-point bend, compression and ILSS testing, it was found that RABS-B/CBW composite 3D printed with 0.7 mm layer width exhibited a notable improvement in maximum flexural load (Lmax), flexural stress at maximum load (sfmax), flex modulus (Ef) and work of fracture (WOF), compression modulus (Ec) and ILSS properties by 30.5%, 49.6%, 88.4% 13.8, 21.6% and 30.3% respectively.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 April 2024

Isiaka Oluwole Oladele, Omoye Oseyomon Odemilin, Samson Oluwagbenga Adelani, Anuoluwapo Samuel Samuel Taiwo and Olajesu Favor Olanrewaju

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid…

Abstract

Purpose

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid biocomposites. This is part of responsible production and sustainability techniques for sustainable development goals. This study aims to broaden animal and plant fiber utilization in the sustainable production of epoxy resins for engineering applications.

Design/methodology/approach

This research used two reinforcing materials [chicken feather fiber (CFF) and bamboo particles (BP)] to reinforce epoxy resin. The BPs were kept constant at 6 Wt.%, while the CFF was varied within 3–15 Wt.% in the composites to make CFF-BP polymer-reinforced composite (CFF-BP PRC). The mechanical experiment showed a 21% reduction in densities, making the CFF-BP PRC an excellent choice for lightweight applications.

Findings

It was discovered that fabricated composites with 10 mm CFF length had improved properties compared with the 15 mm CFF length and pristine samples, which confirmed that short fibers are better at enhancing randomly dispersed fibers in the epoxy matrix. However, the ballistic properties of both samples matched. There is a 40% increase in tensile strength and a 54% increase in flexural strength of the CFF-BP PRC compared to the pristine sample.

Originality/value

According to the literature review, to the best of the authors’ knowledge, this is a novel study of chicken fiber and bamboo particles in reinforcing epoxy composite.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Article
Publication date: 11 September 2024

Kapildeo P. Yadav, Sudipta Ghosh, Sujata Rajak and Amiya K. Samanta

One of the often-employed building constituents in the construction sector is concrete, which involves hydration of cement, leading to the generation of carbon footprints during…

Abstract

Purpose

One of the often-employed building constituents in the construction sector is concrete, which involves hydration of cement, leading to the generation of carbon footprints during its production. Also, massive amount of natural aggregate is illegally mined, which poses serious environmental issues along with ecological misbalance. Researchers are in continuous search of appropriate substitutes to mitigate those challenges and develop innovative concrete mix. Consequently, depletion of natural resources, the disturbances to the environmental and ecological imbalance will reduce. The purpose of this study is to develop a Portland Slag Cement based novel sustainable concrete incorporating Alccofine and Recycled Refractory Brick as fractional replacement of cement and fine aggregate, respectively and evaluate its destructive, non-destructive and microstructural properties.

Design/methodology/approach

M25 grade of concrete adopting 0.45 water-binder proportion, with diverse percentage of Alccofine as fractional substitution of cement and 20% of recycled refractory brick (RRB) as fine aggregate, has been cast and evaluated for diverse mechanical strength following a curing of 7, 14 and 28 days. Scanning electron microscopic analysis has been carried out to study the microstructural changes in the specimens.

Findings

Supplementary use of Alccofine enhanced normal compressive strength of sustainable concrete mix blended with Portland Slag Cement by a large amount at all levels of 7, 14 and 28 days of curing. Test results indicated development of a favourable high-strength sustainable concrete mix by substituting cement with Alccofine.

Originality/value

This manuscript has demonstrated the possibility of developing sustainable concrete blends by incorporating Alccofine 1203 and RRB as partial replacement of Portland Slag Cement and natural fine aggregate, respectively. The strength and potential of concrete incorporating RRB for wider and special application in adverse environmental conditions having higher thermal gradient, as RRB is a valuable waste from high temperature kiln and furnaces. Alccofine 1203 has been included in the concrete mix as an alternative to Portland Slag Cement to improve the mechanical strength properties and durability of concrete intended for adverse environmental application.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Article
Publication date: 10 September 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study examines how different stacking sequences of bamboo and flax fibers, treated with 5% aqueous sodium hydroxide (NaOH) and filled with 6wt% titanium oxide (TiO2), affect…

Abstract

Purpose

This study examines how different stacking sequences of bamboo and flax fibers, treated with 5% aqueous sodium hydroxide (NaOH) and filled with 6wt% titanium oxide (TiO2), affect the physical, mechanical and dry sliding wear resistance properties of a hybrid composite.

Design/methodology/approach

Composites with different fiber stacking arrangements were developed and tested per American Society for Testing and Materials (ASTM) standards to evaluate physical, mechanical and wear resistance properties, focusing on the impact of flax fiber mats at intermediate and outer layers.

Findings

The hybrid composite significantly outperformed composites reinforced solely with bamboo fibers, showing a 65.95% increase in tensile strength, a 53.29% boost in flexural strength and a 91.01% improvement in impact strength. The configuration with multiple layers of flax fiber mat at intermediate and outer levels also demonstrated superior wear resistance.

Originality/value

This study highlights the critical role of stacking order in optimizing the mechanical properties and wear resistance of hybrid composites. The findings provide valuable insights for the design and application of advanced composite materials, particularly in industries requiring high performance and durability.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 45