Search results

1 – 10 of 566
Article
Publication date: 5 April 2024

Zhe Liu, Yichen Yang and Xiuchen Wang

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily…

Abstract

Purpose

Stainless-steel electromagnetic shielding (EMS) fabrics are widely applied as protective materials against electromagnetic interference (EMI). However, these fabrics primarily shield electromagnetic waves through reflection, which can lead to the formation of resonance effects that severely compromise their protective capabilities and potentially cause secondary electromagnetic pollution in the external environment.

Design/methodology/approach

In this paper, carbon nanotube fibers are added via spacing method to replace some stainless-steel fibers to impart absorbing properties to stainless-steel EMS fabric. The shielding effectiveness (SE) of the EMS fabrics across various polarization directions is analyzed. Additionally, a spacing arrangement for the carbon nanotube fibers is designed. The EMS fabric with carbon nanotube fibers is manufactured using a semi-automatic sample loom, and its SE is tested using a small window method test box in both vertical and horizontal polarization directions.

Findings

According to the experimental data and electromagnetic theory analysis, it is determined that when the spacing between the carbon nanotube fibers is less than a specific distance, the SE of the stainless-steel EMS fabric significantly improves. The fabric exhibits stable absorbing properties within the tested frequency range, effectively addressing the issue of secondary damage that arises from relying solely on reflective shielding. Conversely, as the spacing between the carbon nanotube fibers exceeds this distance, the SE diminishes. Notably, the SE in the vertical polarization direction is substantially higher than that in the horizontal polarization direction at the same frequency.

Originality/value

This study provides a new path for the development of high-performance EMS fabrics with good wave-absorption characteristics and SE.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 April 2024

K.G. Rumesh Samarawickrama, U.G. Samudrika Wijayapala and C.A. Nandana Fernando

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric…

Abstract

Purpose

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric using three mordants.

Design/methodology/approach

The colouring agents were extracted from the leaves of Lannea coromandelica using an aqueous extraction method. The extract was characterized using analysis methods of pH, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and cyclic voltammetry measurement. The extract was applied to cotton fabric samples using a non-mordant and three mordants under the two mordanting methods. The dyeing performance of the extracted colouring agent was evaluated using colour fastness properties, colour strength (K/S) and colour space (CIE Lab).

Findings

The aqueous dye extract showed reddish-brown colour, and its pH was 5.94. The GC-MS analysis revealed that the dye extract from the leaves of Lannea coromandelica contained active chemical compounds. The UV-vis and FTIR analyses found that groups influenced the reddish-brown colour of the dye extraction. The cyclic voltammetry measurements discovered the electrochemical properties of the dye extraction. The mordanted fabric samples showed better colour fastness properties than the non-mordanted fabric sample. The K/S and CIE Lab results indicate that the cotton fabric samples dyed with mordants showed more significant dye affinities than non-mordanted fabric samples.

Originality/value

Researchers have never discovered that the Lannea coromandelica leaf extract is a natural dye for cotton fabric dyeing. The findings of this study showed that natural dyes extracted from Lannea coromandelica leaf could be an efficient colouring agent for use in cotton fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 March 2024

Xiaoxia Zhang, Jin Zhang, Peiyan Du and Guohe Wang

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective…

Abstract

Purpose

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective evaluation scores and physical index of KES, explore the cognitive mechanism of the transformation of tactile sensation into neural impulses triggered by subtle mechanical stimuli such as material, texture, density and morphology in fabrics. By combining subjective evaluation of fabric tactile sensation, objective physical properties of fabrics and objective neurobiological signals, explore the neurophysiological mechanism of tactile cognition and the signal characteristics and time process of tactile information processing.

Design/methodology/approach

The ERP technology was first proposed by a British psychologist named Grey Walter. It is an imaging technique of noninvasive brain cognition, whose potential changes are related to the human physical and mental activities. ERP is different from electroencephalography (EEG) and evoked potentials (EP) on the fact that it cannot only record stimulated physical information which is transmitted to brain, but also response to the psychological activities which related to attention, identification, comparison, memory, judgment and cognition as well as to human’s neural physiological changes which are caused by cognitive process of the feeling by stimulation.

Findings

According to potential changes in the cerebral cortex evoked by touching four types of silk fabrics, human brain received the physical stimulation in the early stage (50 ms) of fabrics handle evaluation, and the P50 component amplitude showed negative correlation with fabric smoothness sensations. Around 200 ms after tactile stimulus onset, the amplitude of P200 component show positive correlation with the softness sensation of silk fabrics. The relationship between the amplitude of P300 and the sense of smoothness and softness need further evidence to proof.

Originality/value

In this paper, the brain potential changes caused by touching fabrics for handle evaluation were recorded by event related potential (ERP) method, compared with subjective evaluation scores and physical index of KES, the results shown that the maximum amplitude of P50 component evoked by fabric touching is related to the fabrics’ smoothness and roughness emotion, which means in the early stage processing of tactile sensation, the rougher fabrics could arouse more attention. In addition, the amplitude of P200 component shows positive correlation with the softness sensation of silk fabrics.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 March 2024

Rıza Atav and Özge Çolakoğlu

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate…

Abstract

Purpose

The purpose of this study is to determine the effect of laser treatment on disperse dye-uptake and fastness values of polyester fabrics. Furthermore, it was aimed to evaluate colors directly over the photos of fabric samples instead of color measuring with spectrophotometer which is thought to be useful in terms of online digital color assessment.

Design/methodology/approach

In this study, 100% polyester (150 denier) single jersey knitted fabrics (weight: 145 g/m2, course density: 15 loops/cm, wale density: 24 loops/cm) were used in the trials. The effect of laser treatments before and after dyeing on color was investigated. Laser treatments were applied to fabrics at different resolutions (20, 25 and 30 dpi) and pixel times (60, 80 and 100 µs) before dyeing. The power of the laser beam was 210 W and the wavelength was 10.6 µm. In order to determine the effect of laser treatment on polyester; FTIR analysis, SEM-EDX analysis and bursting strength tests were applied to untreated and treated fabric samples.

Findings

It was found that treatments with laser have a significant effect on disperse dye-uptake of polyester fibers, and for this reason laser-treated fabrics were dyed in darker shade. Furthermore, it was determined that the samples treated at 30 dpi started to melt and the fabric was damaged considerably, but the fabrics treated at 20 and 25 dpi were not affected at all. Another result obtained regarding the use of laser technology in polyester fabrics is that if some areas of fabrics are not treated with laser and some other areas are treated with laser at 20 dpi 60 µs and 25 dpi 60 µs, it will be possible to obtain patterns containing three different shades of the same color on the fabric.

Originality/value

When the literature is examined, it is seen that there are various studies on the dyeability and patterning of polyester fabrics with disperse dyes by laser technology. As it is known, today color measurement is done digitally using a spectrophotometer. However, when we look at a photograph on computer screens, the colors we see are defined by RGB (red-green-blue) values, while in the spectrophotometer they are defined by L*a*b* (L*: lightness-darkness, a*: redness-greenness, b*: yellowness-blueness) values. Especially when it is desired to produce various design products by creating patterns with laser technology, it would be more useful to show the color directly to the customer on the computer screen and to be able to speak over the same values on the color. For this reason, in this study, the color measurement of the fabric samples was not made with a spectrophotometer, instead, the RGB values obtained from the photographs of the samples were converted into L*a*b* values with MATLAB and interpreted, that is, a digital color evaluation was made on the photographs. Therefore, it is believed that this study will contribute to the literature.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 April 2024

Faryal Yousaf, Shabana Sajjad, Faiza Tauqeer, Tanveer Hussain, Shahnaz Khattak and Fatima Iftikhar

Quality assessment of textile products is of prime concern to intimately meet consumer demands. The dilemma faced by textile producers is to figure out the stability among quality…

Abstract

Purpose

Quality assessment of textile products is of prime concern to intimately meet consumer demands. The dilemma faced by textile producers is to figure out the stability among quality criteria and efficiently deal with target specifications. Hence, the basic devotion is to attain the optimum value product which entirely satisfies the views and perceptions of consumers. Selection of best fabric among several alternatives in the presence of contradictory measures is a disputing problem in multicriteria decision-making.

Design/methodology/approach

In the current study, the analytic hierarchy process (AHP) and preference ranking organization method for enrichment evaluation (PROMETHEE) are proficiently used to solve the problem in selection of branded woven shawls. AHP method verifies comparative weights of the criteria selection, while the ranking of fabric alternatives grounded on specific net-outranking flows is executed through PROMETHEE II method.

Findings

The collective AHP and PROMETHEE approaches are applied for the useful accomplishment of grading of branded shawls based on multicriteria weights, used for effective selection of fabric materials in the textile market.

Practical implications

In the apparel industry, fabric and garment manufacturers often rely on hit-and-trial methods, leading to significant wastage of valuable resources and time, in achieving the desirable fabric qualities. The implementation of the findings can assist apparel manufacturers in streamlining their fabric selection processes based on multiple criteria. By adopting this method, industry players can make informed decisions, ensuring a balance between quality standards and consumer expectations, thereby enhancing both product value and market competitiveness.

Originality/value

The methods of Visual PROMETHEE and AHP are assimilated to offer a complete method for the selection and grading of fabrics with reference to multiple selection criteria.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 19 February 2024

Shimaa S.M. Elhadad, Hany Kafafy, Hamada Mashaly and Ahmed Ali El-Sayed

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Abstract

Purpose

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Design/methodology/approach

The newly prepared lecithin liposome was used to encapsulate dyes for the purpose of increasing dyeing affinity. Different ratios of commercially available lecithin liposomes (1%, 3%, 5% and 7%) were used simultaneously in the dyeing of cotton and wool fabrics. The treated fabrics (cotton and wool fabrics) were confirmed using different analytical procedures such as scanning electron microscope (SEM), Fourier-transition infrared spectroscopy, ultraviolet protection factor, colour strength (K|S) measurements and fastness measurements.

Findings

The results show that increasing liposome ratios in dyeing baths leads to increased dyeing affinity for cotton and wool fabrics compared with conventional dyeing without using liposomes. In addition to that, the colour strength values, infrared spectra, SEM and fastness properties of non-liposome-dyed fabrics and liposome-dyed fabrics were investigated.

Originality/value

The research paper provides broad spectrum of green encapsulation fabrics using liposome technology to perform the dye stability, dye strength and fastness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 January 2024

Mehmet Küçük

Fabrics, which are one of the raw materials of the clothing industry, constitute approximately 40–45% of the total cost of an apparel product. Due to the labor-intensive nature of…

Abstract

Purpose

Fabrics, which are one of the raw materials of the clothing industry, constitute approximately 40–45% of the total cost of an apparel product. Due to the labor-intensive nature of this industry and failure to apply scientific methods along with the manufacturing processes, the wastes in the raw materials, including fabrics, become higher. Besides, quality deficiencies are encountered due to the same reasons. This study aims to determine the optimum total fabric layer height based on the fabric type during the cutting process with a straight knife cutting machine, which provided a decrease in the cutting errors.

Design/methodology/approach

Frequently used fabric types in an enterprise operating in organic cotton knitwear were listed. During the cutting tests, the straight knife cutting machine was used as the cutting device. The weight and thickness values of the fabrics were obtained to provide a comparison basis. Two different algorithms were created to evaluate the defective pieces according to fabric type, cutting height and error placement. Cutting resistances of these fabrics were also determined to evaluate the defect reasons. In the end, optimum total fabric layer count and total cutting height suggestions were proposed for each fabric type for a minimum cutting error.

Findings

At the end of this study, the error-free layers were identified per fabric type. At the same time, the optimum cutting height was suggested for each fabric basis. For 40/1 single jersey fabrics, the cutting height should be between 2.10 cm and 10.40 cm; for 30/1 single jersey fabrics, between 1.65 cm and 5.70 cm; for 20/1 single jersey fabrics, between 1.83 cm and 6.70 cm; for two-thread fleece fabrics, between 2.13 cm and 4.70 cm; and for three-thread fleece fabrics, between 0 cm and 4.90 cm.

Research limitations/implications

Within the scope of the study, since the products made of knitted fabric were produced more frequently and in large quantities, the study was carried out with 15 different types of knitted fabrics at 10 different layers. The same methods should be applied for woven, denim and nonwoven fabric types, which would shed light on the following studies.

Originality/value

Due to scarce research carried out on the cutting procedure of the clothing industry in regards to sustainability, this study aims to contribute to this area. The main difference between this study and the studies that mostly make mathematical predictions about the cutting procedure is that it is practice-oriented.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 January 2024

Gobikannan Tamilmani, Venkhatesan D., Santhosh P., Tamilselvan M., Suryappa Jayappa Pawar and Amin Hirenbhai Navinbhai

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles…

73

Abstract

Purpose

This paper aims to study the combination of photochromic microcapsules, which use the ultraviolet (UV) rays for colour changing phenomena, and titanium oxide (TiO2) nanoparticles (NPs), which block the UV rays by their photocatalytic activity in the sunlight on the cotton fabric.

Design/methodology/approach

The TiO2 NPs mixed with photochromic printing paste are used for coating on cotton fabric and further curing is performed in a one-step process. The photochromic pigment printed fabric impregnated in a liquid solution is processed in a two-step process with two variables such as 1% TiO2 and 2% TiO2. The characterization of samples was done with a UV transmittance analyser, surface contact angle, antimicrobial test and fabric physical properties.

Findings

The UV protection of TiO2-treated photochromic printed fabric was high and gives the ultraviolet protection factor rating of 2,000 which denotes almost maximum blocking of UV rays. The antibacterial activity of the one-step samples shows the highest 36 mm zone of inhibition (ZOI) against S. aureus (gram-positive) and 32 mm ZOI against E. coli (gram-negative) bacteria. The one-step sample shows the highest static water contact angle of 118.6° representing more hydrophobicity, whereas the untreated fabric is fully wetted (0.4°). In two-step processes, as the concentration of TiO2 increased, the antibacterial activity, UV blocking and hydrophobicity became better.

Originality/value

This work achieves the multifunctional finishes by using photochromic microcapsules and NPs in a single process as a first attempt. The results inferred that one-step sample has achieved higher values in most of the tests conducted when compared to all other sample.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 566