Search results

1 – 10 of 75
Article
Publication date: 19 July 2024

Alejandro Garcia Rodriguez, Marco Antonio Velasco Peña, Carlos A. Narváez-Tovar and Edgar Espejo Mora

This paper aims to investigate and explain the dual fracture behaviour of PA12 specimens sintered by selective laser sintering (SLS) as a function of wall thickness and build…

Abstract

Purpose

This paper aims to investigate and explain the dual fracture behaviour of PA12 specimens sintered by selective laser sintering (SLS) as a function of wall thickness and build direction with a powder mixture 30:70. To achieve this objective, research related to chemical, thermal and structural behaviours as a function of the input variables was carried out to describe and explain why ductile-fragile behaviour occurs during fractures under uniaxial tension manufactured via a methodology of material analysis and manufacturing processes.

Design/methodology/approach

The factorial design 32 relates the fracture of PA12 tensile specimens to the horizontal, transverse and vertical build directions at 2.0, 2.5 and 3.0 mm thicknesses, respectively. Fractographic images revealed the fracture surfaces and their dual ductile-fragile behaviour related to the specimens’ measured crystalline, thermal, surface and chemical properties.

Findings

The study showed that thermal property variables differ depending on the input variables. The wall thickness variable affected this morphology the most, showing the highest percentage of the ductile area, followed by the transverse and vertical directions. It was determined that the failure in the vertical direction is due to crystalline gradients associated with the layer-by-layer construction process. The pore density may be closely related to generating ductile and brittle areas.

Originality/value

In this paper, fracture characterisation is performed based on the mechanical, chemical, structural, thermal and morphological properties of PA12 manufactured by SLS. In addition, a heatmap of porosities in cross-sections is constructed using a machine learning model (k-means) related to dual fracture behaviour. This research revealed significant differences in the fracture type according to the build direction. In addition, thin-section fractography provides a more detailed explanation of the fragile behaviour of the vertical direction associated with crystalline changes due to the direction of the sintering layers.

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2022

Liliya Frolova and Olga Sergeyeva

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles…

Abstract

Purpose

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles. To achieve this goal, the phase composition of the precipitate formed was estimated, the composition and size of the obtained particles were determined and Pourbaix diagrams were constructed.

Design/methodology/approach

An integrated approach combining thermodynamic calculations and experimental research methods is used. The constructed Pourbaix diagram makes it possible to suggest the phase composition of the sediment. The use of cyclic voltammetry made it possible to establish the mechanism of deposit formation on the cathode during the treatment of the solution with contact nonequilibrium low-temperature plasma. The resulting product was examined using X-ray phase analysis and scanning electron microscopy.

Findings

The article presents the results of theoretical and experimental studies on the synthesis of copper (II) oxide. The influence of the parameters of plasma-chemical synthesis on the shape and phase composition of the deposits formed has been studied.

Originality/value

A plasma-chemical technology for obtaining copper oxide in the form of single crystals of a regular faceted shape is proposed. The mechanism of formation of copper oxide has been established by cyclic voltammetry. The constructed Pourbaix diagrams show the area of existence of the product.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 July 2024

Bo He, Jian Tan, Guang Yang, Junzhen Yi and Yushi Wang

This paper aims to systematically investigate the effect of laser remelting on the surface morphology and mechanical properties of laser deposition manufactured thin-walled…

Abstract

Purpose

This paper aims to systematically investigate the effect of laser remelting on the surface morphology and mechanical properties of laser deposition manufactured thin-walled Ti-6Al-4V alloy.

Design/methodology/approach

Thin-walled Ti-6Al-4V samples were prepared by laser deposition manufacturing (LDM) method and subsequently surface-treated by laser remelting in a controlled environment. By experiments, the surface qualities and mechanical properties of LDM Ti-6Al-4V alloy before and after laser remelting were investigated.

Findings

After laser remelting, the surface roughness of LDM Ti-6Al-4V alloy decreases from 15.316 to 1.813 µm, hard and brittle martensite presents in the microstructure of the remelted layer, and the microhardness of the laser remelted layer increases by 11.39%. Compared with the machined LDM specimen, the strength of the specimen including the remelted layer improves by about 5%, while the elongation and fatigue life decrease by about 72.17% and 64.60%, respectively.

Originality/value

The results establish foundational data for the application of laser remelting to LDM thin-walled Ti-6Al-4V parts, and may provide an opportunity for laser remelting to process the nonfitting surfaces of LDM parts.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 August 2024

Wei Chen, Yucheng Ma, Xingyu Liu, Enguang Xu, Wenlong Yang, Junhong Jia, Rui Lou, Chaolong Zhu, Chenjing Wu and Ziqiang Zhao

The purpose of this paper is to improve the mechanical and tribological properties of Si3N4 ceramics and to make the application of Si3N4 ceramics as tribological materials more…

Abstract

Purpose

The purpose of this paper is to improve the mechanical and tribological properties of Si3N4 ceramics and to make the application of Si3N4 ceramics as tribological materials more extensive.

Design/methodology/approach

Si3N4-based composite ceramics (SN-2L) containing nitrogen-doped graphene quantum dots (N-GQDs) were prepared by hot press sintering process through adding 2 Wt.% nanolignin as precursor to the Si3N4 matrix, and the dry friction and wear behaviors of Si3N4-based composite against TC4 disc were performed at the different loads by using pin-on-disc tester.

Findings

The friction coefficients and wear rates of SN-2L composite against TC4 were significantly lower than those of the single-phase Si3N4 against TC4 at the load range from 15 to 45 N. At higher load of 45 N, SN-2L/TC4 pair presented the lowest friction coefficient of 0.25, and the wear rates of the pins and discs were as low as 1.76 × 10−6 and 2.59 × 10−4mm3/N·m. The low friction and wear behavior could be attributed to the detachment of N-GQDs from the ceramic matrix to the worn surface at the load of 30 N or higher, and then an effective lubricating film containing N-GQDs, SiO2, TiO2 and Al2SiO5 formed in the worn surface. While, at the same test condition, the friction coefficient of the single-phase Si3N4 against TC4 was at a range from 0.45 to 0.58. The spalling and cracking morphology formed on the worn surface of single-phase Si3N4, and the wear mechanism was mainly dominated by adhesive and abrasive wear.

Originality/value

Overall, a high-performance green ceramic composite was prepared, and the composite had a good potential for application in engineering tribology fields (such as aerospace bearings).

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0161/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 July 2024

Jian Shi, Zhenhua Ma, Jieyu Dai and Jundong Wang

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings…

Abstract

Purpose

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings under different temperatures and oxidation times.

Design/methodology/approach

In the high-temperature oxidation test, specimens were oxidized at three different temperatures of 850, 980, and 1,100 °C for durations of 10, 20, 50, 100, 200, and 300 h, respectively. In the gas thermal shock test, specimens were pre-oxidized for 10, 20, 50, and 100 h, followed by a high-temperature gas thermal shock test at 1,100 °C.

Findings

In the high-temperature oxidation tests, with increasing oxidation time, the oxidation layer thickened, and the air-film holes diameter decreased. The microstructure of the bond coat transitioned from strip-like to block-like, and internal cracks transformed from numerous and short to larger and deeper. Below the bond coat, a noticeable disappearance layer of strengthening phase appeared, with increasing thickness. The strengthening phase in the substrate transitioned from regular square shapes to circles as temperature increased. In gas thermal shock tests at 1,100 °C, the oxidation weight gain ratio increased with longer pre-oxidation times, whereas the erosion weight loss ratio gradually decreased.

Originality/value

The originality and significance of this study lie in its departure from the typical subjects of high-temperature oxidation and thermal shock tests. Unlike common research targets, this study focuses on IC10 simulative specimens with thermal barrier coatings and air-film holes. Furthermore, it investigates the effects of varying temperatures and oxidation durations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 July 2024

Lina Syazwana Kamaruzzaman, Yingxin Goh and Yi Chung Goh

This study aims to investigate the effect of incorporating cobalt (Co) into Sn-58Bi alloy on its phase composition, tensile properties, hardness and thermal aging performances…

Abstract

Purpose

This study aims to investigate the effect of incorporating cobalt (Co) into Sn-58Bi alloy on its phase composition, tensile properties, hardness and thermal aging performances. The fracture morphologies of tensile-tested solders are also investigated to correlate the microstructural changes with tensile properties of the solder alloys. Then, the thermal aging performances of the solder alloys are investigated in terms of their intermetallic compound (IMC) layer morphology and thickness.

Design/methodology/approach

The Sn-58Bi and Sn-58Bi-xCo, where x = 1.0, 1.5 and 2.0 Wt.%, were prepared using the flux doping technique. X-ray diffraction (XRD) is used to study the phase composition of the solder alloys, whereas scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are used to investigate the microstructure, fractography and compositions of the solders. Tensile properties such as ultimate tensile strength (UTS), Young’s modulus and elongation are tested using the tensile test, whereas the microhardness value is gained from the micro-Vickers hardness test. The morphology and thickness of the IMC layer at the solder’s joints are investigated by varying the thermally aging duration up to 56 days at 80°C.

Findings

XRD analysis shows the presence of Co3Sn2 phase and confirms that Co was successfully incorporated via the flux doping technique. The microstructure of all Sn-58Bi-xCo solders did not differ significantly from Sn-58Bi solders. Sn-58Bi-2.0Co solder exhibited optimum properties among all compositions, with the highest UTS (87.89 ± 2.55 MPa) at 0.01 s−1 strain rate and the lowest IMC layer thickness at the interface after being thermally aged for 56 days (3.84 ± 0.67 µm).

Originality/value

The originality and value of this research lie in its novel exploration of the flux doping technique to introduce minor alloying of Co into Sn-58Bi solder alloys, providing new insights into enhancing the properties and performance of these solders. This new Sn-Bi-Co alloy has the potential to replace lead-containing solder alloy in low-temperature soldering.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 September 2024

Nandalal Acharjee, Subhas Ganguly, Prasenjit Biswas and Bidyapati Sarangi

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has…

Abstract

Purpose

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has explored black pigmented calcium aluminosilicate glass (BPCG), a specialized material known for its unique properties, which holds promise for transforming the color capabilities of traditional ceramics.

Design/methodology/approach

In this investigation, initially composite ceramic sample (B-1) was prepared by milling process prior to sieve analysis to attain the particle size within 44 microns. Microanalysis and morphology and thermography were studied by energy-dispersive X-ray spectroscopy, scanning electron microscope and thermogravimetric analysis and found Sample-B-1 received attractive properties like firing shrinkage, porosity, bulk density and firing strength along with good pyro-plastic properties at various temperatures like 950°C, 1050°C, 1000°C and 1180°C. Furthermore, BPCG-assisted pigmented ceramic composites were synthesized with B-1 matrix. CIE lab investigation of the attributed composites (C-series) within selective soaking range of 5–20 min was performed, and the investigation found that prominent black hue appeared (L: 24.09, a*: −0.17, b*: −0.49) for C-10 containing appeared phases of Di-Co-Silicide (26%), Ni-Chromite, Stilpnomelane (rich in iron) as obtained by X-ray diffraction studies.

Findings

Ceramic material played a significant role in the realms of art and craft, as well as in technology. The artistic facet reveals concepts or ornamentation, while the craft echoes both traditional and functional appeal. Technology, on the other hand, involves the logical implementation behind the creation.

Originality/value

This C-10 Sample comprised the lower percentage of mullite which attributed that the BPCG homogeneously mixed in the matrix of base (B-1) and appeared as spinal staff. Therefore, BPCG was a potential candidate for ceramic metallization, and this traditional metallization processes often faced some challenges like uniformity and mixing in the ceramic composite domain practices. This study aimed to open up new avenues for artistic decoration and bridging the gap between traditional craftsmanship and modern technology. Furthermore, BPCG’s role in color assessment through shocking techniques added an exciting concept for the ceramic practitioners, designers or ceramic educators.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 2 July 2024

Md Helal Miah, Dharmahinder Singh Chand, Gurmail Singh Malhi and Gongdong Wang

Regarding the broadening of the titanium alloy application field, the surface treatment coating of TC4 alloy has become an essential global research topic. This study aims to…

Abstract

Purpose

Regarding the broadening of the titanium alloy application field, the surface treatment coating of TC4 alloy has become an essential global research topic. This study aims to illustrate the titanium-based composite coating is created by laser cladding TC4+Ni60/hBN composite powder onto the surface of the TC4 alloy.

Design/methodology/approach

Different laser scanning speeds were initially selected to prepare TC4+Ni60/hBN titanium-based composite coating on the surface of TC4 alloy using RFL-C1000 Raycus fiber laser. Second, the cladding layers with different laser scanning speeds are composed of Ti2Ni, TiN0.3, TiC, TiB, α-Ti and other phases. Finally, precision balances, friction and wear testing machines were used to analyze and test the structure, phase, hardness, wear amount and friction coefficient of the composite coating and to study the effect of laser scanning speed on the microstructure and properties of the titanium-based composite coating.

Findings

It is evident that at the low laser scanning speed, the reinforcing phase agglomeration area is distributed in the substrate as a network. Increasing the laser scanning speed can reduce the cladding layer's friction coefficient and improve the cladding layer's hardness and wear resistance. But too high a laser scanning speed will cause defects such as pores and cracks in the cladding layer and also affect the cladding layer. The bonding performance of the layer and the substrate is optimal in this research at a laser scanning speed of 10 mm/s.

Originality/value

This research has practical value in improving the quality of surface treatment coating in modern aerospace and automotive companies.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 75