Search results

1 – 10 of over 2000
Article
Publication date: 15 July 2024

Jian Shi, Zhenhua Ma, Jieyu Dai and Jundong Wang

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings…

Abstract

Purpose

The purpose of this study is to investigate the effects of high-temperature oxidation tests and gas thermal shock tests on IC10 simulated components with thermal barrier coatings under different temperatures and oxidation times.

Design/methodology/approach

In the high-temperature oxidation test, specimens were oxidized at three different temperatures of 850, 980, and 1,100 °C for durations of 10, 20, 50, 100, 200, and 300 h, respectively. In the gas thermal shock test, specimens were pre-oxidized for 10, 20, 50, and 100 h, followed by a high-temperature gas thermal shock test at 1,100 °C.

Findings

In the high-temperature oxidation tests, with increasing oxidation time, the oxidation layer thickened, and the air-film holes diameter decreased. The microstructure of the bond coat transitioned from strip-like to block-like, and internal cracks transformed from numerous and short to larger and deeper. Below the bond coat, a noticeable disappearance layer of strengthening phase appeared, with increasing thickness. The strengthening phase in the substrate transitioned from regular square shapes to circles as temperature increased. In gas thermal shock tests at 1,100 °C, the oxidation weight gain ratio increased with longer pre-oxidation times, whereas the erosion weight loss ratio gradually decreased.

Originality/value

The originality and significance of this study lie in its departure from the typical subjects of high-temperature oxidation and thermal shock tests. Unlike common research targets, this study focuses on IC10 simulative specimens with thermal barrier coatings and air-film holes. Furthermore, it investigates the effects of varying temperatures and oxidation durations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 July 2019

Bingxue Cheng, Haitao Duan, Yongliang Jin, Lei Wei, Jia Dan, Song Chen and Jian Li

This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature

98

Abstract

Purpose

This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives.

Design/methodology/approach

Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed.

Findings

The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards.

Originality/value

Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 September 2006

H. Singh, D. Puri, S. Prakash and M. Srinivas

To characterise the high temperature oxide scales for some plasma sprayed NiCrAlY coated Ni‐ and Fe‐based superalloys.

Abstract

Purpose

To characterise the high temperature oxide scales for some plasma sprayed NiCrAlY coated Ni‐ and Fe‐based superalloys.

Design/methodology/approach

Ni‐22Cr‐10Al‐1Y metallic coatings were deposited on two Ni‐based superalloys; Superni 601 and Superni 718 and one Fe‐based superalloy; Superfer 800H by the shrouded plasma spray process. Oxidation studies were conducted on uncoated as well as plasma spray coated superalloys in air at 900°C under cyclic conditions for 50 cycles. Each cycle consisted of 1 h heating followed by 20 min of cooling in air. The thermogravimetric technique was used to approximate the kinetics of oxidation. X‐ray diffraction, SEM/EDAX and EPMA techniques were used to analyse the oxide scales.

Findings

All of the coated, as well as the uncoated, superalloys followed an alnost‐parabolic rate of oxidation. The NiCrAlY coating was found to be successful in maintaining its continuous contact with the superalloy substrates in all the cases. The oxide scales formed on the exposed NiCrAlY coated superalloys were found to be intact and spallation‐free. The main phases analysed for the coated superalloys were oxides of nickel, chromium and aluminium and spinel of nickel and chromium, which are expected to be useful for developing oxidation resistance at high temperatures.

Practical implications

The coated superalloys showed remarkable cyclic oxidation resistance under simulated laboratory conditions. However, it is suggested that these coated superalloys also should be tested in actual industrial environments of boilers and gas turbines, etc. so as to obtain more practical and reliable oxidation data.

Originality/value

The knowledge of the reaction kinetics and the nature of the surface oxide scales formed during oxidation is important for evaluating the alloys for their use and degradation characteristics in high temperature applications such as steam boilers, furnace equipment, heat exchangers and piping in chemical industry, reformer, baffle plates/tubes in fertilizer plants, jet engines, pump bodies and parts.

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 March 2018

Rakesh Goyal, Buta Singh Sidhu and Vikas Chawla

This paper aims to discuss that a conventional Al2O3, 1.5 Wt.% carbon nanotubes (CNTs)-Al2O3, 2 Wt.% CNTs-Al2O3 and 4 Wt.% CNTs-Al2O3 composite coatings were deposited with the…

Abstract

Purpose

This paper aims to discuss that a conventional Al2O3, 1.5 Wt.% carbon nanotubes (CNTs)-Al2O3, 2 Wt.% CNTs-Al2O3 and 4 Wt.% CNTs-Al2O3 composite coatings were deposited with the help of Plasma spray process.

Design/methodology/approach

To better understand the effect of CNT reinforcement on oxidation resistance, high-temperature oxidation behaviour of conventional Al2O3, 1.5 Wt.% CNTs-Al2O3, 2 Wt.% CNTs-Al2O3 and 4 Wt.% CNTs-Al2O3 composite coatings at 900°C was compared with the performance of the uncoated ASME-SA213-T11 boiler tube steel substrate.

Findings

The results showed that the CNT-reinforced alumina coatings exhibited better oxidation resistance and thermal stability than uncoated ASME-SA213-T11 boiler tube steel. The coated steel substrates had a lower mass gain rate than the substrate after different oxidation times.

Originality/value

Limited literature is available where the CNT have been reinforced into the composite alloy powders and has been thermally spray-deposited for various surface engineering applications. This research showed that with the increase in the percentage of CNTs into the alloy powder mixture, there is a significant reduction in weight gain and hence higher resistance to oxidation.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2004

M.A. Quraishi and Hariom K. Sharma

Stainless steel 316 was coated with CeO2 and Y2O3 modified aluminide and titanium aluminide coatings. The coatings were prepared by the pack cementation method and the high

Abstract

Stainless steel 316 was coated with CeO2 and Y2O3 modified aluminide and titanium aluminide coatings. The coatings were prepared by the pack cementation method and the high temperature oxidation behaviour of the coatings was investigated in an atmosphere containing a limited supply of air. The performance of the coatings was studied by measuring oxidation kinetics, and by scanning electron microscopic techniques. The oxidation rates of these coatings were reduced in the presence of CeO2 and Y2O3 due to better adherence of their oxide scales.

Details

Anti-Corrosion Methods and Materials, vol. 51 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 December 2018

Somrerk Chandra-Ambhorn, Neramit Krasaelom, Tummaporn Thublaor and Sirichai Leelachao

This study aims to apply the pack cementation to develop the Fe-Al layers on the surface of FC 25 cast iron in order to increase the high-temperature corrosion resistance of the…

Abstract

Purpose

This study aims to apply the pack cementation to develop the Fe-Al layers on the surface of FC 25 cast iron in order to increase the high-temperature corrosion resistance of the alloy.

Design/methodology/approach

Pack cementation was applied on the surface of FC 25 cast iron at 1,050°C. The bare and aluminised alloys were subjected to the oxidation test in 20 per cent O2-N2 at 850 °C. Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD) were used for characterisation.

Findings

The layers of pack cementation consisted of Fe2Al5, FeAl2 and FeAl, and solid solution alloyed with Al. The oxidation kinetics of the bare cast iron was parabolic. Mass gain of the aluminised cast iron was significantly decreased compared with that of the bare cast iron. This was because of the protective alumina formation on the aluminised alloy surface. Al in the Fe–Al layer also tended to be homogenised during oxidation.

Originality/value

Even though the aluminising of alloys was extensively studied, the application of that process to the FC 25 cast iron grade was originally developed in this work. The significantly reduced mass gain of the aluminised FC 25 cast iron makes the studied alloy be promising for the use as a valve seat insert in an agricultural single-cylinder four-stroke engine, which might be run by using a relatively cheaper fuel, i.e. LPG, but as a consequence requires the higher oxidation resistance of the engine parts.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 2002

M. Mobin, H.K. Sharma and S.K. Hasan

The aluminide and CeO2 and La2O3 containing aluminide coatings on carbon steel have been prepared by a pack cementation process. The influence of CeO2 and La2O3 additions on the…

Abstract

The aluminide and CeO2 and La2O3 containing aluminide coatings on carbon steel have been prepared by a pack cementation process. The influence of CeO2 and La2O3 additions on the oxidation rates of aluminide coatings has been investigated. The performance of coatings was studied by measuring oxidation kinetics, metallography, SEM and X‐ray diffraction analysis techniques. The oxidation‐resistance of coated carbon steel is discussed on the basis of a decrease in oxidation rates as well as adherence of oxide scales. The oxidation rates of carbon steel and aluminide coatings were markedly reduced in the presence of CeO2 and La2O3 in the temperature range of 700‐900°C. The oxidation rates were significantly affected by the morphology of oxide scales. In the case where the structure of oxides scales was not seriously disrupted due to decarburisation, the oxidation rates were significantly reduced.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 November 2015

Tomasz Pawel Dudziak, Hailiang Du and Prasanta Datta

The purpose of this study is to investigate the high-temperature behavior of newly developed high-impulse power magnetron sputtering system (HIPIMS) coatings and compare them to…

Abstract

Purpose

The purpose of this study is to investigate the high-temperature behavior of newly developed high-impulse power magnetron sputtering system (HIPIMS) coatings and compare them to the standard TiAlCr system deposited on to a Ti–Al intermetallic alloy. The corrosion test was performed in air for 4,000 hours at 850°C.

Design/methodology/approach

In this study, air oxidation test was performed at high temperature. Design and methodology is described in detail in the methodology section in the submitted manuscript. The test was carried out by discontinuous exposure of the three different systems produced by different deposition technique. The exposed samples were investigated using scanning electron microscope coupled with energy dispersive X-ray spectroscopy. The exposed samples were investigated from the surface and cross-sections.

Findings

The performed study shows that HIPIMS coatings had a much better oxidation resistance at a high temperature than that offered by the standard physical vapor deposition (PVD) system. HIPIMS costing developed Al–Cr oxide on the surface; however, cracks and detachments were found at the interface between the coating and the substrate. TiAlCr coating spalled off from the material due to the critical thickness reached; moreover, high brittleness and lack of adherence were found. Due to poor oxidation resistance, TiAlCr coating was discarded from the test after 3,000 hours of exposure.

Originality/value

The work performed in this study was designed for 4,000 hours oxidation at 850°C. The long-term exposures are not commonly met in the research work due to the cost and time. The work clearly shows differences between new type of coatings and standard PVD system applied on TiAl lightweight alloy.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 April 2022

Qunfeng Zeng, Hao Jiang, Qi Liu, Gaokai Li and Zekun Ning

This paper aims to introduce a high-temperature grease design method assisted by back propagation neural network (BPNN) and verify its application value.

Abstract

Purpose

This paper aims to introduce a high-temperature grease design method assisted by back propagation neural network (BPNN) and verify its application value.

Design/methodology/approach

First, the grease data sets were built by sorting out the base data of greases in a large number of literatures and textbooks. Second, the BPNN model was built, trained and tested. Then, the optimized BPNN model was used to search the unknown data space and find the composition of greases with excellent high-temperature performance. Finally, a grease was prepared according to the selected composition predicted by the model and the high-temperature physicochemical performance, high-temperature stability and tribological properties under different friction conditions were investigated.

Findings

Through high temperature tribology experiments, thermal gravimetric analysis and differential scanning calorimetry experiments, it is proved that the high temperature grease prepared based on BPNN has good high-temperature performance.

Originality/value

To the best of the authors’ knowledge, a new method of designing and exploring high-temperature greases is successfully proposed, which is useful and important for the industrial applications.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 July 2024

Vitus Mwinteribo Tabie, Jamal-Deen Kukurah, Jianwei Li, Anthony Akayeti, James Kwasi Quaisie and Xiaojing Xu

Titanium alloys and composites have proven to contain desirable properties for use at elevated temperatures. One such material is the Ti750 composite, which can be used at…

Abstract

Purpose

Titanium alloys and composites have proven to contain desirable properties for use at elevated temperatures. One such material is the Ti750 composite, which can be used at temperatures up to 750°C for a brief period. This paper aims the microstructure, phase compositions, apparent porosity and hardness of both sintered and heat-treated TiC reinforced Ti750 composites for consideration in aircraft engine design.

Design/methodology/approach

The fabrication of TiC-reinforced Ti750 composites was achieved through spark plasma sintering (SPS). To analyze the microstructure and X-ray diffraction, a scanning electron microscope (SEM) with model number S-3400N and a D8 advance model machine were used, respectively. The microhardness of the samples was measured using a Vickers hardness tester with model HV-1000. The research incorporated three solid solution treatments: 975°C/3 h/AC, 1,010°C/3 h/AC and 1,025°C/3 h/AC, along with a solid-solution aging treatment at 1,010°C/3 h/AC + 750°C/8 h/AC. Additionally, oxidation analysis was conducted on the samples.

Findings

The microstructures contained enhanced TiC and Ti5Si3 phases in the near a-Ti matrix. The microhardness of the sintered composite was over twice that of the matrix alloy, and its porosity was reduced by about 0.35%. The sample treated at 1,010°C/3 h/AC had the highest enhanced peaks and microhardness of 1,277.1 HV. After oxidation at 800°C for 100 h, the accumulated weight of the solid solution composite at 1,010 °C/3 h/AC was the lowest (3.0 mg.cm-2). The surface microstructure contained oxides of TiO2 and a spalling white area containing a small amount of Al2O3 and SiO2.

Originality/value

There is limited research on Ti-Al-Sn-Zr-Mo-Si-based TMCs using a combination of the SPS method. This study used SiCp as a reinforcement for the Ti750 matrix alloy. The consolidation of SiCp and Ti750 powders using the SPS method, heat treatment of the resulting TiC reinforced Ti750 composites and study of the microstructure and properties of the composites are not found in literature or under consideration for publication in any media.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 2000