Search results

1 – 10 of 731
Article
Publication date: 5 March 2010

Keiji Houjou, Kotoji Ando and Koji Takahashi

Zirconia ceramics exhibit high strength and fracture toughness. The purpose of this paper is to research a possibility of crack healing in zirconia ceramics.

Abstract

Purpose

Zirconia ceramics exhibit high strength and fracture toughness. The purpose of this paper is to research a possibility of crack healing in zirconia ceramics.

Design/methodology/approach

ZrO2/SiC composite ceramics are sintered and subjected to three‐point bending. A surface crack of 100 μm in diameter is formed on each specimen. The cracks are healed and the specimens are tested under bending.

Findings

The paper finds that ZrO2/SiC composite ceramic material had a high crackhealing ability at a considerably low temperature. For example, a crack of 100 μm in diameter is healed even at 600°C.

Research limitations/implications

The paper provides a low temperature healing and a new mechanism of crack healing.

Originality/value

The paper shows the healing temperature and the minimum time required to heal showed a good proportional relation on the Arrhenius plot at temperatures of 600‐800°C. Moreover, the crack healing is caused by SiO2 cristobalite produced during the healing.

Details

International Journal of Structural Integrity, vol. 1 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 March 2012

Keiji Houjou and Koji Takahashi

The purpose of this paper is to study the crackhealing mechanism of ZrO2/SiC composite ceramics which have a high crackhealing ability at low temperature.

Abstract

Purpose

The purpose of this paper is to study the crackhealing mechanism of ZrO2/SiC composite ceramics which have a high crackhealing ability at low temperature.

Design/methodology/approach

The effects of dispersed SiC and the environment on crackhealing behaviour were investigated. The fatigue strength of crackhealed specimens was also investigated.

Findings

The main conclusions are that for crackhealing of ZrO2 ceramics, it is necessary to have both a SiC composite and an oxidative environment; and when ZrO2/SiC composite ceramics are heat‐treated in air, a phase transformation attributable to the SiC composite results in crackhealing and improvement of fracture toughness and bending strength.

Originality/value

An appropriate heat treatment for ZrO2/SiC composite caused not only crackhealing but also the improvement of fracture toughness, and created a multiplier effect on crackhealing, bending strength and fracture toughness.

Details

International Journal of Structural Integrity, vol. 3 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 September 2023

Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing and Guang-Zhu Zhang

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar…

Abstract

Purpose

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar cracks and reduce the water absorption of mortar after healing.

Design/methodology/approach

Bacillus pseudofirmus spores were immobilized with EP particles as self-healing agents. The effects of adding self-healing agents on the compressive strength of mortar specimens were observed. The ability of mortar specimens to heal cracks was evaluated using crack microscopic observation and water absorption experiments. The filler at the cracks was microscopically analyzed by scanning electron microscope and X-ray diffraction experiments.

Findings

First, the internal curing effect of EP promotes the hydration of cement in mortar, which generates more amount and denser crystal structure of Ca(OH)2 at mortar cracks and improves the self-healing ability of mortar. Second, the self-healing ability of mortar improves with the increase of self-healing agent admixture. Adding a self-healing agent of high admixture makes the planar undulation of calcite crystal accumulation at mortar cracks more significant. Finally, the initial crack widths that can be completely healed by adding EP and self-healing agents to the mortar are 200 µm and 600 µm, respectively.

Originality/value

The innovation points of this study are as follows. (1) The mechanism of the internal curing effect of EP particles on the self-healing ability of mortar cracks was revealed by crack microscopic observation tests and microscopic experiments. (2) The effect of different self-healing agent amounts on the self-healing ability of mortar cracks has been studied. (3) The effects of EP particles and self-healing agents on healing different initial widths were elucidated by crack microscopic observation tests.

Graphical abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 January 2024

Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…

Abstract

Purpose

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.

Design/methodology/approach

Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.

Findings

The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.

Originality/value

A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 October 2021

Dibyendu Adak, Donkupar Francis Marbaniang and Subhrajit Dutta

Self-healing concrete is a revolutionary building material that will generally reduce the maintenance cost of concrete constructions. Self-healing of cracks in concrete structure…

Abstract

Purpose

Self-healing concrete is a revolutionary building material that will generally reduce the maintenance cost of concrete constructions. Self-healing of cracks in concrete structure would contribute to a longer service life of the concrete and would make the material more durable and more sustainable. The cementitious mortar with/without incorporating encapsulates at different percentages of slag replacement with the cement mix improves autogenous healing at different ages. Therefore, this study’s aim is to develop a self-healing cementitious matrix for repair and retrofitting of concrete structures.

Design/methodology/approach

In the present work, waste straw pipes are used as a capsule, filled with the solution of sodium hydroxide (NaOH), sodium silicate (Na2SiO3) and colloidal nano-silica as self-healing activators. An artificial micro-crack on the control and blended mortar specimens at different percentages of slag replacement with cement (with/without encapsulation) is developed by applying a compressive load of 50% of its ultimate load-carrying capacity. The mechanical strength and ultrasonic pulse velocity, water absorption and chloride ion penetration test are conducted on the concrete specimen before and after the healing period. Finally, the self-healing activity of mortar mixes with/without encapsulation is analysed at different ages.

Findings

The encapsulated mortar mix with 10% of slag content has better self-healing potential than all other mixes considering mechanical strength and durability. The enhancement of the self-healing potential of such mortar mix is mainly due to hydration of anhydrous slag on the crack surface and transformation of amorphous slag to the crystalline phase in presence of encapsulated fluid.

Research limitations/implications

The self-healing activities of the slag-based cementitious composite are studied for a healing period of 90 days only. The strength and durability performance of the cracked specimen may be increased after a long healing period.

Practical implications

The outcome of the work will help repair the cracks in the concrete structure and enhances the service life.

Originality/value

This study identifies the addition encapsulates with a self-healing activator fluid that can recover its strength after minor damage.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 June 2016

Qizi Huang Peng, Tianyu Liu, Quan Sun and Wenwei Huang

As an important connecting component, the reliability of aluminium alloy welded joints influences the whole structural effectiveness and stability of equipment. The purpose of…

Abstract

Purpose

As an important connecting component, the reliability of aluminium alloy welded joints influences the whole structural effectiveness and stability of equipment. The purpose of this paper is to propose a novel reliability estimation approach to the welded joints based on time-transformed Wiener process with automatic image measurement of crack growth. The crack length information of the welded joints is incorporated into reliability analysis to reflect the product time-varying characteristics.

Design/methodology/approach

The proposed approach is superior to other crack growth estimations in that it innovatively introduce a non-contact and flexible photogrammetry technique.First, on-line crack growth images of aluminium alloy welded joints are acquired by the designed monitor system. Second, crack length is calculated with image measurement, then the crack growth data during the manufacturing process is prepared. Finally, a time-transformed Wiener process is used to modeling the degradation, and reliability estimation is carried out with Wiener model. The approach has been validated on five 7075-T7351 welded joint samples.

Findings

The method has a twofold task: first, the extraction of crack length growth data by a sequence of image processing. The main step is to model the crack skeleton with crack skeleton tree, and remove it edges to calculate the length of crack; second, the prediction of crack growth and reliability estimation.

Research limitations/implications

The limitation of proposed method should not be ignored. The pixel/mm scale should be calibrated in advance that means once we have built the monitor system, the relative position of the CCD camera and the surveyed crack cannot change anymore. It has reduced the flexibility. To improve this, we can obtain binocular vision in crack image measurement. The 3-D measurements could solve calibration problem and provide more information, such as the depth and the orientation of crack to research. Therefore, future work can be centered on the improvement of monitor system and measurement precision.

Originality/value

In the paper a novel method to estimate reliability of crack growth from welded joint based on image measurement has been presented. This method could be widely applied in different filed of manufacturing systems, reliability engineering and structural analysis.

Details

Engineering Computations, vol. 33 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

John Kietzman, Byong‐Ho Park and Friedrich Prinz

Shape deposition manufacturing (SDM) is a layered manufacturing process which iteratively combines material addition and removal to create artifacts in a variety of materials…

1997

Abstract

Shape deposition manufacturing (SDM) is a layered manufacturing process which iteratively combines material addition and removal to create artifacts in a variety of materials. Castable thermoset resins have been used to build a variety of parts via polymer SDM. The strength of these parts is determined by the bulk material properties of the part materials and by their interlayer adhesion. Early polyurethane materials had high bulk strength but poor interlayer adhesion, resulting in weak multilayer parts. Interlayer strength improvements were achieved through additional processing steps or the use of different polyurethane and epoxy part materials. These improvements allowed the fabrication of aerodynamic flap mechanisms used in wind‐tunnel testing. These parts are examples of the intricate, functional mechanisms to which the polymer SDM process is ideally suited.

Details

Rapid Prototyping Journal, vol. 7 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2018

Clayton Neff, Matthew Trapuzzano and Nathan B. Crane

Additive manufacturing (AM) is readily capable of producing models and prototypes of complex geometry and is advancing in creating functional parts. However, AM processes…

Abstract

Purpose

Additive manufacturing (AM) is readily capable of producing models and prototypes of complex geometry and is advancing in creating functional parts. However, AM processes typically underperform traditional manufacturing methods in mechanical properties, surface roughness and hermeticity. Solvent vapor treatments (vapor polishing) are commonly used to improve surface quality in thermoplastic parts, but the results are poorly characterized.

Design/methodology/approach

This work quantifies the surface roughness change and also evaluates the effect on hermeticity and mechanical property impacts for “as-printed” and acetone vapor-polished ABS tensile specimens of 1-, 2- and 4-mm thicknesses produced by material extrusion (FDM).

Findings

Vapor polishing proves to decrease the power spectral density for surface roughness features larger than 20 µm by a factor of 10× and shows significant improvement in hermeticity based on both perfluorocarbon gross leak and pressure leak tests. However, there is minimal impact on mechanical properties with the thin specimens showing a slight increase in elongation at break but decreased elastic modulus. A bi-exponential diffusion decay model for solvent evaporation suggest a thickness-independent and thickness-dependent time constant with the latter supporting a plasticizing effect on mechanical properties.

Originality/value

The contributions of this work show vapor polishing can have a substantial impact on the performance for end-use application of ABS FDM components.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2019

Faeze Nejati, Samira Ahmadi and S.A. Edalatpanah

Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within…

Abstract

Purpose

Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within the first few days after it, when concrete is subjected to exceptionally high loads. The precast concrete, which is the concrete in very early ages, may result in severe cracks or damages. In conventional construction projects, sometimes working with concrete, which had not reached its ultimate strength, is an unavoidable matter of fact. This paper aims to discuss these issues.

Design/methodology/approach

Researchers in the field of construction materials have done their best to make some changes in the different parts of the concrete in order to bring about reforms, based on the existing needs, and achieve new quality and primacy from concrete. One kind of concrete, the emergence of which dates back to many years ago, is self-compacting concrete. Thanks to its high efficiency for the parts with complex forms of high-density steel, this kind of concrete suggests new prospects.

Findings

This study aims at evaluating the effect of early loads on the 28-day compressive strength of concretes with zeolite and limestone powder under different curing conditions (wet or dry). In this regard, two self-compacting concrete mix designs with the same ratio of water to cementations materials and 0.4 percent and 10 percent zeolite have been considered; therefore, concrete cube samples with zeolite and limestone powder in different curing conditions at ages of three, one and seven days under preloading with 80–90 percent of compressive strength are damaged, and after curing in different conditions, their 28-day compressive strength is measured. According to the results, the recovery of the 28-day compressive strength of damaged samples, compared to that of intact samples, is possible in all curing conditions. The experiments that have been performed on concrete samples under dry and wet curing conditions show that the full recovery of compressive strength of damaged samples compared to that of intact ones happened only in preloaded samples at the age of one days, and in other ages (three and seven days) the 28-day strength reduction has occurred in damaged samples compared to the that in intact samples. The results of concrete samples with zeolite and without limestone powder at the age of one day indicate the greatest impact on other samples on the 28-day compressive strength of damaged samples compared to that of intact ones, occurring under dry condition.

Originality/value

This research analyzed and studied the influence under wet and dry curing conditions and the presence of limestone powder and zeolite fillers in recovering of the 28-day compressive strength of preloaded concrete samples at early stages (one, three and seven days) after the construction of the concrete.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 731