Search results

1 – 10 of 69
Article
Publication date: 17 September 2021

Wang Zhizhong, Han Chao, Guosheng Huang, Han Bin and Han Bin

The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient…

Abstract

Purpose

The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient deformation and severe crushing. To solve the problems, many post-treat techniques have been used to improving the quality by eliminating the micro-defects. This paper aims to help scholars and engineers in this field a better and systematic understand of CS technology by summarizing the post-treatment technologies that have been investigated recently years.

Design/methodology/approach

This review summarizes the types of micro-defects and introduces the effect of micro-defects on the properties of CS coating/additive manufactured, illustrates the post-treatment technologies and its effect on the microstructure and performances, and finally outlooks the future development trends of post-treatments for CS.

Findings

There are significant discoveries in post-treatment technology to change the performance of cold spray deposits. There are also many limitations for post-treatment methods, including improved performance and limitations of use. Thus, there is still a strong requirement for further improvement. Hybrid post-treatment may be a more ideal method, as it can eliminate more defects than a single method. The proposed ultrasonic impact treatment could be an alternative method, as it can densify and flatten the CS deposits.

Originality/value

It is the first time to reveal the influence factors on the performances of CS deposits from the perspective of microdefects, and proposed corresponding well targeted post-treatment methods, which is more instructive for improving the performances of CS deposits.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2013

Mengqi Yuan, Timothy T Diller, David Bourell and Joseph Beaman

The purpose of this paper is to acquire thermal conductivities of both fresh and preheated polyamide 12 powder under various conditions to provide a basis for effective and…

Abstract

Purpose

The purpose of this paper is to acquire thermal conductivities of both fresh and preheated polyamide 12 powder under various conditions to provide a basis for effective and accurate control during the laser sintering (LS) process.

Design/methodology/approach

A Hot Disk® TPS 500 thermal measurement system using a transient plane source (TPS) technology was employed for thermal conductivity measurements. Polyamide 12 powder was packed at different densities, and different carrier gases were used. Tests were also performed on fully dense laser sintered polyamide 12 to establish a baseline.

Findings

Polyamide 12 powder thermal conductivity varies with packing density and temperature, which is approximately one-third bulk form thermal conductivity. Inter-particle bonding is the primary factor influencing polyamide 12 thermal conductivity.

Research limitations/implications

Limited ranges of density were tested, and the carrier gas needed carefully control to prevent powder oxidation. Thermal properties obtained were not tested in the LS process.

Originality/value

This experimental result could be used to enhance thermal control during the LS process.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2015

Shunying Ji, Shaocheng Di and Shewen Liu

In oil/gas exploitations of ice-covered cold regions, conical offshore structures are designed to reduce ice force and to avoid the ice-induced intense vibrations of vertical…

Abstract

Purpose

In oil/gas exploitations of ice-covered cold regions, conical offshore structures are designed to reduce ice force and to avoid the ice-induced intense vibrations of vertical structures. The purpose of this paper is to investigate the interaction between ice cover and conical offshore structures, the discrete element method (DEM) is introduced to determine the dynamic ice loads under different structure parameters and ice conditions.

Design/methodology/approach

The ice cover is dispersed into a series of bonded spherical elements with the parallel bonding model. The interaction between ice cover and conical offshore structure is obtained based on the DEM simulation. The influence of ice velocity on ice load is compared well with the experimental data of Hamburg Ship Model Basin. Moreover, the ice load on a conical platform in the Bohai Sea is also simulated. The ice loads on its upward and downward ice-breaking cones are compared.

Findings

The DEM can be used well to simulate the ice loads on conical structures. The influences of ice velocity, ice thickness, conical angle on ice loads can be analyzed with DEM simulations.

Originality/value

This DEM can also be applied to simulate ice loads of different offshore structures and aid in determining ice load in offshore structure designs.

Details

Engineering Computations, vol. 32 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 August 2008

Alan M. Forster, Gabriela M. Medero, Tom Morton and Jim Buckman

The influence of flood conditions upon traditional cob construction is little understood. This paper aims to investigate the ability of cob materials to resist flood situations…

2757

Abstract

Purpose

The influence of flood conditions upon traditional cob construction is little understood. This paper aims to investigate the ability of cob materials to resist flood situations and documents basic failure mechanisms. This work also seeks to investigate the wettability characteristics of cob materials utilising environmental scanning electron microscopy.

Design/methodology/approach

This paper takes the form of a literature review and case study underpinning laboratory experiments.

Findings

Cob walls that are suitably compacted, straw reinforced and are composed and manufactured of the correct materials appear to have the ability to resist total failure when subjected to initial flood conditions, however, the duration to which these structures will remain intact has still to be ascertained, and testing is ongoing. A correlation appears to exist between the rate of cob material's compaction and the duration to which the structural integrity of the walls was retained when the samples were submerged in water. In addition, the use of straw reinforcing increased the duration to which the wall could be submerged before failure. Un‐reinforced cob walls that were submerged in simulated floodwaters, exhibited an undercutting pattern of deterioration prior to failure. The materials for cob construction exhibited both hydrophobic and hydrophilic characteristics. This would have an influence on the material's ability to saturate and dehydrate, and also have an impact on moisture transfer mechanisms. Unsaturated cob wall/samples developed surface tension between hydrophilic surfaces and this is believed by the authors to increase inter‐particle bond strength within the material by the suction effect.

Originality/value

This paper is believed to be the first preliminary investigation into the effect of flooding on cob structures. Additionally, it utilises environmental scanning electron microscopy to reveal information about the surface characteristics of the materials and uses wettability studies to assess the hydrophilic and hydrophobic nature of the aforementioned.

Details

Structural Survey, vol. 26 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 11 November 2014

M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami and R.S. Barsoum

The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for…

Abstract

Purpose

The purpose of this paper is to address the problems of interaction of tensile stress-waves with polyurea/fused-silica and fused-silica/polyurea interfaces, and the potential for the accompanying interfacial decohesion.

Design/methodology/approach

The problems are investigated using all-atom non-equilibrium molecular-dynamics methods and tools. Before these methods/tools are employed, previously determined material constitutive relations for polyurea and fused-silica are used, within an acoustic-impedance-matching procedure, to predict the outcome of the interactions of stress-waves with the material-interfaces in question. These predictions pertain solely to the stress-wave/interface interaction aspects resulting in the formation of transmitted and reflected stress- or release-waves, but do not contain any information regarding potential interfacial decohesion. Direct molecular-level simulations confirmed some of these predictions, but also provided direct evidence of the nature and the extent of interfacial decohesion. To properly model the initial state of interfacial cohesion and its degradation during stress-wave-loading, reactive forcefield potentials are utilized.

Findings

Direct molecular-level simulations of the polyurea/fused-silica interfacial regions prior to loading revealed local changes in the bonding structure, suggesting the formation of an interphase. This interphase was subsequently found to greatly affect the polyurea/fused-silica decohesion strength.

Originality/value

To the authors’ knowledge, the present work is the first public-domain report of the use of the non-equilibrium molecular dynamics and reactive force-field potentials to study the problem of interfacial decohesion caused by the interaction of tensile waves with material interfaces.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 September 1986

S. Wiktorek and E.G. Bradley

Sprayed metal coatings are an alternative means of effectively protecting steel structures and equipment exposed to severe environments where other coatings, such as paint, are…

Abstract

Sprayed metal coatings are an alternative means of effectively protecting steel structures and equipment exposed to severe environments where other coatings, such as paint, are unsuitable or provide only temporary protection. Selecting the most suitable material for a given application is a very important step in achieving success. For resistance to corrosive environments, zinc and aluminium are the most successful and widely used coatings, both being anodic to iron and steel. The performance of sprayed metal coatings is a function of the environment, coating thickness, adhesion, density and the type of sealer used. The mechanism of adhesion is mainly mechanical, the bond strength being dependent on the application process chosen and standard of surface preparation. This paper describes the results of research work associated with hot sprayed aluminium applied by combustion flame and electric arc processes using compressed air and argon carrier gases. Studies included ductility and adhesion tests, scanning electron microscopy of surfaces and cross sections, and Auger surface analyses.

Details

Anti-Corrosion Methods and Materials, vol. 33 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 24 August 2021

Bukola Joseph Babalola, Ojo Jeremiah Akinribide, Olukayode Samuel Akinwamide and Peter Apata Olubambi

During the operation of nickel-based alloys as blades and discs in turbines, the sliding activity between metallic surfaces is subjected to structural and compositional changes…

Abstract

Purpose

During the operation of nickel-based alloys as blades and discs in turbines, the sliding activity between metallic surfaces is subjected to structural and compositional changes. In as much as friction and wear are influenced by interacting surfaces, it is necessary to investigate these effects. This study aims to understand better the mechanical and tribological characteristics of Ni-17Cr-10X (X = Mo, W, Ta) ternary alloy systems developed via spark plasma sintering (SPS) technique.

Design/methodology/approach

Nickel-based ternary alloys were fabricated via SPS technique at 50 MPa, 1100 °C, 100 °C/min and a dwell time of 10 mins. Scanning electron microscopy, X-Ray diffraction, energy dispersive X-ray spectroscopy, nanoindentation techniques and tribometer were used to assess the microstructure, phase composition, elemental dispersion, mechanical and tribological characteristics of the sintered nickel-based alloys.

Findings

The outcome of the investigation showed that the Ni-17Cr10Mo alloy exhibited the highest indentation hardness value of 8045 MPa, elastic modulus value of 386 GPa and wear resistance. At the same time, Ni-17Cr10W possessed the least mechanical and wear properties.

Originality/value

It can be shown that the SPS technique is efficient in the development of nickel-based alloys with good elemental distribution and without defects such as segregation of alloying elements, non-metallic inclusions. This is evident from the scanning electron microscopy micrographs.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 June 2017

Shubham Raj, Sher Mohammad, Rima Das and Shreya Saha

This study aims to investigate the optimum proportion of coconut fibre and cement suitable for rammed earth wall construction. Coconut fibres and cement can be easily incorporated…

Abstract

Purpose

This study aims to investigate the optimum proportion of coconut fibre and cement suitable for rammed earth wall construction. Coconut fibres and cement can be easily incorporated into the soil mixture which adds strength and durability to the wall. This paper highlights the salient observations from a systematic investigation on the effect of coconut fibre on the performance of stabilized rammed earth blocks.

Design/methodology/approach

Stabilization of soil was done by adding Ordinary Portland Cement (2.5, 5.0, 7.5 and 10.0 per cent by weight of soil), whereas coconut fibre in length about 15 mm was added (0.2, 0.4, 0.6, 0.8 and 1.0 per cent by weight of soil) as reinforcement. Thirty types of mixes were created by adding different proportions of cement and fibre to locally available soil and compacting the mix at constant compaction energy in three layers with Proctor rammer.

Findings

Samples were tested for compressive strength and tensile strength, and failure patterns were analysed. The use of cement and fibre increases ultimate strengths significantly up to an optimum limit of 0.8 per cent fibre content, provides a secondary benefit of keeping material bound together after failure and increases residual strength. Benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propagation after its initial formation.

Originality/value

After analysing the results, it is recommended to use 0.8 per cent fibre and 5-10 per cent cement by weight of soil to achieve considerable strength. This research may add a value in the areas of green and sustainable housing, waste utilization, etc.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 1981

THE Glacier Metal Co Ltd manufacturers three dry bearing materials, namely Glacier DU, DQ and Deva Metal.

Abstract

THE Glacier Metal Co Ltd manufacturers three dry bearing materials, namely Glacier DU, DQ and Deva Metal.

Details

Industrial Lubrication and Tribology, vol. 33 no. 4
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 June 1995

Mukesh Agarwala, David Bourell, Joseph Beaman, Harris Marcus and Joel Barlow

Gives a brief overview of post‐processing of selective laser sintered (SLS) metal parts to improve structural integrity and/or to induce a material transformation. Presents…

2459

Abstract

Gives a brief overview of post‐processing of selective laser sintered (SLS) metal parts to improve structural integrity and/or to induce a material transformation. Presents results which show the effect of post‐processing liquid phase sintering temperature and time on material properties. Describes the hot isostatic pressing process, and discusses its application to SLS metal parts. Results gained from using this process show that it is suitable for achieving almost full‐density parts.

Details

Rapid Prototyping Journal, vol. 1 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 69