Search results

1 – 10 of 167
Article
Publication date: 12 August 2022

Isaac Chukwuemezu Okereke, Mohammed S. Ismail, Derek Ingham, Kevin J. Hughes, Lin Ma and Mohamed Pourkashanian

This paper aims to numerically investigate the impact of gas diffusion layer (GDL) anisotropic transport properties on the overall and local performance of polymer electrolyte fuel

286

Abstract

Purpose

This paper aims to numerically investigate the impact of gas diffusion layer (GDL) anisotropic transport properties on the overall and local performance of polymer electrolyte fuel cells (PEFCs).

Design/methodology/approach

A three-dimensional numerical model of a polymer electrolyte fuel cell with a single straight channel has been developed to investigate the sensitivity of the fuel cell performance to the GDL anisotropic transport properties – gas permeability, diffusivity, thermal conductivity and electrical conductivity. Realistic experimentally estimated GDL transport properties were incorporated into the developed PEFC model, and a parametric study was performed to show the effect of these properties on fuel cell performance and the distribution of the key variables of current density and oxygen concentration within the cathode GDL.

Findings

The results showed that the anisotropy of the GDL must be captured to avoid overestimation/underestimation of the performance of the modelled fuel cell. The results also showed that the fuel cell performance and the distributions of current density and oxygen mass fraction within the cathode GDL are highly sensitive to the through-plane electrical conductivity of the GDL and, to a lesser extent, the through-plane diffusivity, and the thermal conductivity of the GDL. The fuel cell performance is almost insensitive to the gas permeability of the GDL.

Practical implications

This study improves the understanding of the importance of the GDL anisotropy in the modelling of fuel cells and provides useful insights on improving the efficiency of the fuel cells.

Originality/value

Realistic experimentally estimated GDL transport properties have been incorporated into the PEFC model for the first time, allowing for more accurate prediction of the PEFC performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2019

Yeping Peng, Ghasem Bahrami, Hossein Khodadadi, Alireza Karimi, Ahmad Soleimani, Arash Karimipour and Sara Rostami

The purpose of this study is simulation of of polymer electrolyte membrane fuel cell. Proton-exchange membrane fuel cells are promising power sources for use in power plants and…

Abstract

Purpose

The purpose of this study is simulation of of polymer electrolyte membrane fuel cell. Proton-exchange membrane fuel cells are promising power sources for use in power plants and vehicles. These fuel cells provide a high level of energy efficiency at low temperature without any pollution. The convection inside the cell plays a key role in the electrochemical reactions and the performance of the cell. Accordingly, the transport processes in these cells have been investigated thoroughly in previous studies that also carried out functional modeling.

Design/methodology/approach

A multi-phase model was used to study the limitations of the reactions and their impact on the performance of the cell. The governing equations (conservation of mass, momentum and particle transport) were solved by computational fluid dynamics (CFD) (ANSYS fluent) using appropriate source terms. The two-phase flow in the fuel cell was simulated three-dimensionally under steady-state conditions. The flow of water inside the cell was also simulated at high-current density.

Findings

The simulation results suggested that the porosity of the gas diffusion layer (GDL) is one of the most important design parameters with a significant impact on the current density limitation and, consequently, on the cell performance.

Originality/value

This study was mainly focused on the two-phase analysis of the steady flow in the fuel cell and on investigating the impacts of a two-phase flow on the performance of the cell and also on the flow in the GDL, the membrane and the catalyst layer using the CFD.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 May 2022

Kathrin Ebner and Lily Koops

A reliable and safe operation of fuel cells (FCs) is imperative for their application in aviation, especially within the main powertrain. Moreover, performance and lifetime…

Abstract

Purpose

A reliable and safe operation of fuel cells (FCs) is imperative for their application in aviation, especially within the main powertrain. Moreover, performance and lifetime requirements for technical and economic viability are demanding compared to their stationary or road transportation counterparts, while the operating conditions are considered challenging. Prognostics and health management (PHM) could represent a powerful tool for enhancing reliability, durability and performance by detecting, predicting and/or mitigating relevant degradation and failure mechanisms. Against this backdrop, the authors consider it of high relevance to obtain an understanding of the effectiveness of PHM approaches for polymer electrolyte fuel cells (PEFCs) for future aircraft applications, which represents the aim of this paper.

Design/methodology/approach

In this study, the authors first discuss application relevant failure modes, review state-of-the-art PHM approaches and, consecutively, assess the potential of FC control strategies for aviation. Aiming for a tangible, comparable metric for this initial assessment, the authors apply a published remaining useful life prediction method to load profiles for a range of aviation-specific applications.

Findings

The authors’ analysis shows significant potentials for lifetime improvement by (partial) avoidance of high power operation and rapid load change through control strategies. Tapping into these theoretical potentials, however, requires significant developments in the field of PEFC PHM and a focus on aviation specific degradation and performance testing.

Originality/value

The novelty of this study lies in creating an understanding of the potential of avoiding or preventing certain degradation modes by means of PHM in the PEFC specifically in aviation applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 April 2007

Elena Carcadea, H. Ene, D.B. Ingham, R. Lazar, L. Ma, M. Pourkashanian and I. Stefanescu

This paper aims to present a three‐dimensional computational fluid dynamics (CFD) model that simulates the fluid flow, species transport and electric current flow in PEM fuel cells

4085

Abstract

Purpose

This paper aims to present a three‐dimensional computational fluid dynamics (CFD) model that simulates the fluid flow, species transport and electric current flow in PEM fuel cells.

Design/methodology/approach

The model makes use of a general‐purpose CFD software as a basic tool incorporating fuel cell specific submodels for multi‐component species transport, electrochemical kinetics, water management and electric phase potential analysis in order to simulate various processes that occur in a PEM fuel cell.

Findings

Three dimensional results for the flow field, species transport, including waster formations, and electric current distributions are presented for two test flow configurations in the PEM fuel cell. For the two cases presented, reasonable predictions have been obtained, and this provides an insight into the effect of the flow designs to the operation of the fuel cell.

Research limitations/implications

It is appreciated that the CFD modeling of fuel cells is, in general, still facing significant challenges due to the limited understanding of the complex physical and chemical processes existing within the fuel cell. The model is now under further development to improve its capabilities and undergoing further validations.

Practical implications

The model simulations can provide detailed information on some of the key fluid dynamics, physical and chemical/electro‐chemical processes that exist in fuel cells which are crucial for fuel cell design and optimization.

Originality/value

The model can be used to understand the operation of the fuel cell and provide and alternative to experimental investigations in order to improve the performance of the fuel cell.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

Mohammed Ismail, Derek Ingham, Kevin J Hughes, Lin Ma and Mohamed Pourkashanian

The purpose of this paper is to numerically investigate the effects of the shape on the performance of the cathode catalyst agglomerate used in polymer electrolyte fuel cells

Abstract

Purpose

The purpose of this paper is to numerically investigate the effects of the shape on the performance of the cathode catalyst agglomerate used in polymer electrolyte fuel cells (PEFCs). The shapes investigated are slabs, cylinders and spheres.

Design/methodology/approach

Three 1D models are developed to represent the slab like, cylindrical and spherical agglomerates, respectively. The models are solved for the concentration of the dissolved oxygen using a finite element software, COMSOL Multiphysics®. “1D” and “1D axisymmetric” schemes are used to model the slab like and cylindrical agglomerates, respectively. There is no one-dimensional scheme available in COMSOL Multiphysics® for spherical coordinate systems. To resolve this, the governing equation in “1D” scheme is mathematically modified to match that of the spherical coordinate system.

Findings

For a given length of the diffusion path, the variation in the performances of the investigated agglomerates is dependent on the operational overpotential. Under low magnitudes of the overpotentials, where the performance is mainly limited by reaction, the slab-like agglomerate outperforms the spherical and cylindrical agglomerates. In contrast, under high magnitudes of the overpotentials where the agglomerate performance is mainly limited by diffusion, the spherical and cylindrical agglomerates outperform the slab-like agglomerate.

Practical implications

The current advances in the nano-fabrication technology gives more flexibility in designing the catalyst layers in PEFCs to the desired structures. If the design of the agglomerate catalyst is to be assessed, the current micro-scale modelling offers an efficient and rapid way forward.

Originality/value

The current micro-scale modelling is an efficient alternative to developing a full (or half) fuel cell model to evaluate the effects of the agglomerate structure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 May 2023

Jinbei Tian, Mohammed S. Ismail, Derek Ingham, Kevin J. Hughes, Lin Ma and Mohamed Pourkashanian

This paper aims to investigate the impact of three different flow channel cross sections on the performance of the fuel cell.

Abstract

Purpose

This paper aims to investigate the impact of three different flow channel cross sections on the performance of the fuel cell.

Design/methodology/approach

A comprehensive three-dimensional polymer electrolyte membrane fuel cell model has been developed, and a set of conservation equations has been solved. The flow is assumed to be steady, fully developed, laminar and isothermal. The investigated cross sections are the commonly used square cross section, the increasingly used trapezoidal cross section and a novel hybrid configuration where the cross section is square at the inlet and trapezoidal at the outlet.

Findings

The results show that a slight gain is obtained when using the hybrid configuration and this is because of increased velocity, which improves the supply of the reactant gases to the catalyst layers (CLs) and removes heat and excess water more effectively compared to other configurations. Further, the reduction of the outlet height of the hybrid configuration leads to even better fuel cell performance and this is again because of increased velocity in the flow channel.

Research limitations/implications

The data generated in this study will be highly valuable to engineers interested in studying the effect of fluid cross -sectional shape on fuel cell performance.

Originality/value

This study proposes a novel flow field with a variable cross section. This design can supply a higher amount of reactant gases to the CLs, dissipates heat and remove excess water more effectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2018

Mahiro Kato, Asegun Henry, Samuel Graham, Duc Hong Doan and Kazuyoshi Fushinobu

This paper aims to investigate the oxygen transport characteristics in the electrolyte membrane of proton exchange membrane fuel cell (PEMFC), in particular, the water content…

Abstract

Purpose

This paper aims to investigate the oxygen transport characteristics in the electrolyte membrane of proton exchange membrane fuel cell (PEMFC), in particular, the water content dependence and the microscopic view of the molecular transport.

Design/methodology/approach

Molecular dynamics simulation is used to examine the oxygen transport characteristics in the electrolyte membrane of PEMFC that we have experimentally observed in our previous study.

Findings

Molecular dynamics simulation well predicts the diffusion coefficient of oxygen in the membrane. It was found that the oxygen molecules have preference in their transport passage that governs the property.

Originality/value

First attempt is to theoretically examine the experimentally observed water uptake dependence of the oxygen diffusion coefficient in membrane and to explain the mechanism.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2023

Manikandamaharaj T.S. and Jaffar Ali B.M.

Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the…

Abstract

Purpose

Effective performance of a direct ethanol fuel cell (FC) stack depends on the satisfactory operation of its individual cells where it is always challenging to manage the temperature gradient, water flow and distribution of reactants. In that, the design of the bipolar fuel flow path plate plays a vital role in achieving the aforementioned parameters. Further, the bipolar plates contribute 80% of the weight and 30%–40% of its total cost. Aim of this study is to enhance the efficiency of fuel to energy conversion and to minimize the overall cost of production.

Design/methodology/approach

The authors have specifically designed, simulated and fabricated a standard 2.5 × 2.5 cm2 active area proton exchange membrane (PEM) FC flow path plate to study the performance by varying the flow fields in a single ladder, double ladder and interdigitated and varying channel geometries, namely, half curve, triangle and rectangle.

Findings

Using the 3D PEMFC model and visualizing the physical and electrochemical processes occurring during the operation of the FCs resulted in a better-performing flow path plate design. It is fabricated by using additive manufacturing technology. In addition, the assembly of the full cell with the designed flow path plate shows about an 11.44% reduction in total weight, which has a significant bearing on its total cost as well as specific energy density in the stack cell.

Originality/value

Simultaneous optimization of multiple flow path parameters being carried out for better performance is the hallmark of this study which resulted in enhanced energy density and reduced cost of device production.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 July 2019

Zhenxiao Chen, Derek Ingham, Mohammed Ismail, Lin Ma, Kevin J. Hughes and Mohamed Pourkashanian

The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells.

Abstract

Purpose

The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells.

Design/methodology/approach

An efficient mathematical model for air-breathing PEM fuel cells has been built in MATLAB. The sensitivity of the fuel cell performance to the heat transfer coefficient is investigated first. The effect of hydrogen humidity is also studied. In addition, under different hydrogen humidities, the most appropriate thickness of the gas diffusion layer (GDL) is investigated.

Findings

The heat transfer coefficient dictates the performance limiting mode of the air-breathing PEM fuel cell, the modelled air-breathing fuel cell is limited by the dry-out of the membrane at high current densities. The performance of the fuel cell is mainly influenced by the hydrogen humidity. Besides, an optimal cathode GDL and relatively thinner anode GDL are favoured to achieve a good performance of the fuel cell.

Practical implications

The current study improves the understanding of the effect of the hydrogen humidity in air-breathing fuel cells and this new model can be used to investigate different component properties in real designs.

Originality/value

The hydrogen relative humidity and the GDL thickness can be controlled to improve the performance of air-breathing fuel cells.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 1 April 1998

186

Abstract

Details

Industrial Lubrication and Tribology, vol. 50 no. 2
Type: Research Article
ISSN: 0036-8792

1 – 10 of 167